آنالیز پایداری سیستم های فازی چندجمله ای مرتبه کسری به روش مجموع مربعات

نوع مقاله : مقاله برق

نویسندگان

1 1- حسن یعقوبی-دانشکده مهندسی برق-دانشگاه آزاداسلامی واحدگناباد –گناباد-ایران

2 دانشکده مهندسی برق، دانشگاه آزاد اسلامی، گناباد

چکیده

در این مقاله آنالیز پایداری سیستم های فازی چندجمله ای مرتبه کسری به روش مجموع مربعات مورد بررسی قرار گرفته است و برخلاف مدل فازی T-S که تنها قابلیت کار با ماتریس های ثابت را دارد در این روش باچندجمله ای ها ، در ماتریس های سیستم سروکار داریم. بنابراین نمایش مدل سیستم غیرخطی با استفاده از چندجمله ای ها روشی کارآمدتر است. نکته اصلی در برتری روش آن است که در روش پایدارسازی سیستم های مرتبه کسری بر اساس مدل فازیT-S ، شرایط پایدارسازی بر اساس تئوری پایداری لیاپانوف و بوسیله نامساوی ماتریسی خطی ( LMI ( بیان می گردد در حالیکه آنالیز پایداری بر اساس مدل فازی چند جمله ای بوسیله تابع لیاپانوف چندجمله ای و در قالب مجموع جملات مربعی(SOS) بیان می گردد و در سیستم هایی که روش های بهینه سازی LMI کارساز نیست آنالیز پایداری و طراحی کنترلر را میتوان با این روش انجام داد.ازلحاظ عددی توسط ابزار sostools که اخیرا توسعه یافته شده است می توان تابع لیاپانوف چندجمله ای را بدست آورد . در این مقاله شرایط پایداری یک سیستم فازی چندجمله ای مرتبه کسری مورد بررسی قرار گرفته و شرایط لازم و کافی برای پایداری بدست امده است و در پایان نیز با ذکر یک مثال صحت و درستی روش پیشنهادی نشان داده شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

stability analysis of fuzzy Polynomial fractional differential Systems using Sum-of-Squares

نویسندگان [English]

  • hassan yaghoubi 1
  • Assef Zare 2
1 Department of Electrical and Electronic Engineering, gonabad Branch, Islamic Azad University,gonabad, Iran
2 Department of Electrical Eng. IAU of Gonabad
چکیده [English]

This paper discusses the stability analysis of fractional-order polynomial systems by using the sum of squares method. furthermore the feasibility of designing the problems demonstrates which can not be represented in LMIs. unlike the T-S fuzzy model which can only work with fixed matrices, this method deal with polynomial matrices. Therefore, displaying a nonlinear system model using polynomials is a more efficient way. The stabilization of fractional order systems based on the fuzzy T-S model is expressed according to Lyapunov theory of stability by linear matrix inequality (LMI) while stability analysis polynomial fuzzy is based on the sum of the square. The main advantage of the method is the stabilization of fractional order systems based on the fuzzy T-S model. the stabilization conditions are expressed according to Lyapunov theory of stability by linear matrix inequality (LMI) while stability analysis is based on the polynomial fuzzy model. the systems where LMI optimization methods do not work, stability analysis and controller design can be performed by SOSTOOLS. In this paper, the stability conditions of a fractional-order polynomial fuzzy system are investigated then obtained necessary and sufficient conditions for stability. Finally, shown an example of the accuracy and The correctness of the proposed method.

کلیدواژه‌ها [English]

  • polynomial fuzzy system
  • sum of squares method
  • polynomial systems
  • stability analysis
]1[ محسن صادقی ، حسین مروی وعلیرضا احمدی فرد،" ارائه یک روش نوین و کارآمد استخراج ویژگی برای بازشناسی گفتار مقاوم مبتنی بر تبدیل فوریه کسری و بهینه ساز تکامل تفاضلی"، نشریه مدل‌سازی در مهندسی، دوره 18، شماره 61 ، تابستان 1399، صفحه 96- 85.
]2[ عزیز عظیمی،شهاب غلامی و حسین بیاتی،" بررسی انتقال‌حرارت هدایت غیرفوریه‌ای در شن با استفاده از مدل‌های بر پایه حساب کسری"، نشریه مدل‌سازی در مهندسی، دوره 15، شماره 48 ، بهار 1399، صفحه 22- 15.
[3] M . D. Ortigueira,"Fractional calculus for scientists and engineers", Springer Science & Business Media, Vol. 84, 2011.
[4]  R . Caponetto,"Fractional order systems: modeling and control applications",  World Scientific, Vol. 72, 2010.
[5] J. C. Mayo-Maldonado, G. Fernandez-Anaya, O. F. Ruiz-Martinez, " Stability of conformable linear differential systems: a behavioural framework with applications in fractional-order control", IET Control Theory & Applications, 2020, pp.2900-2913.
]6[ روح اله مقصودی، یعقوب حیدری و بهزاد مشیری،" یک تحلیل مقایسه ای از الگوریتم های هوش جمعی کلونی زنبور مصنوعی و بهینه سازی گروهی ذرات در طراحی یک کنترل کننده PID فازی کسری و پیاده سازی آن بر روی موتور DC"، نشریه مدل‌سازی در مهندسی، دوره 11، شماره 35 ، زمستان1392، صفحه 23- 11.
[7] D.Idiou, A. Charef ,  A. Djouambi, " Linear fractional order system identification using adjustable fractional order differentiator", IET Signal Processing, 2013, pp.398-409.
[8] R.Zhang, G.Tian,  S.Yang,  H.Cao, " Stability analysis of a class of fractional order nonlinear systems with order lying in (0, 2) ", ISA transactions, Vol.56, 2015,pp. 102-110.
[9] D. Matignon, " Stability results for fractional differential equations with applications to control processing", In Computational engineering in systems applications, Vol. 2, No. 1, July 1996, pp. 963-968.
[10] L. Chen, R. Wu, Y. Cheng, Y. Q. Chen, " Delay-dependent and order-dependent stability and stabilization of fractional-order linear systems with time-varying delay", IEEE Transactions on Circuits and Systems, 2019.
[11] B. Li, X. Zhang, " Robust stability and stabilization of fractional-order interval systems control systems", IET Control Theory & Applications, Vol. 10, No. 14, 2016, pp. 1724-1731.
[12] J. Sabatier, “On stability and performances of fractional order systems ”, In 3rd IFAC Symposium FDA, Vol. 10, 2008.
[13] S. Wen, Z. Zeng, T. Huang, "Exponential stability analysis of memristor-based recurrent neural networks with time-varying delays. Neurocomputing", Vol. 97,2012, pp. 233-240.
[14] H. T.Tuan, H. Trinh, " Stability of fractional-order nonlinear systems by Lyapunov direct method", IET Control Theory & Applications, Vol. 12, No. 17, 2018,pp. 2417-2422.
[15] Y. Boukal, M. Darouach, M. Zasadzinski, N. E. Radhy, "Large-scale fractional-order systems: stability analysis and their decentralized functional observers design", IET Control Theory & Applications, Vol. 12, No. 13, 2017, pp.359-367.
[16] J. G. Lu, G. Chen, "State feedback control for a class of fractional-order nonlinear systems State feedback control for a class of fractional-order nonlinear systems IEEE/CAA Journal of Automatic: an LMI approach ", IEEE Transactions on Automatic Control, Vol. 54, No. 6,2009, pp. 1294-1299.
[17] B. Li, X. Zhang, " Observer-based robust control of 0 < α < 1 fractional-order linear uncertain control systems", IET Control Theory & Applications, Vol. 10, No. 14,2016, pp. 1724-1731.
[18] K. Tanaka and H. O. Wang, Fuzzy Control Systems Analysis and Design: A Linear Matrix Inequality Approach, John Wiley and Sons Publisher, New York ,2001.
[19] K. Tanaka, H. Yoshida, H. Ohtake and H. O. Wang “A Sum of Squares Approach to Stability Analysis of Polynomial Fuzzy Systems”, 2007 American Control Conference, New York, July, 2007, pp.4071-4076.
[20] S. S. Farinwata , G. Vachtsevanos, “Stability analysis of the fuzzy logic controller designed by the phase portrait assignment algorithm” in Proc. 2nd IEEE Int. Conf. Fuzzy Syst., San Francisco, CA, Apr. 1993, pp. 1377–1382.
[21] Y. J. Chen, M. Tanaka and K. Tanaka, "Stability analysis and region-of-attraction estimation using piecewise polynomial Lyapunov functions: polynomial fuzzy model approach", IEEE Transactions on Fuzzy systems, Vol. 23, No. 4,2014, pp. 1314-1322.
[22] J. Chen, A. Tepljakov and E. Petlenkov, "Stabilization and stability robustness of coupled non-constant parameter time fractional PDEs", IEEE Access, 2019, pp. 163969-163980.
[23] K. Tanaka, H. Yoshida, H. Ohtake and H. O. Wang, " A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems", IEEE Transactions on Fuzzy systems,2008, Vol. 17, No. 4,2008, pp. 911-922.
[24] N.T. Thanh, H. Trinh and V. N. Phat, "Stability analysis of fractional differential time-delay equations", IET Control Theory & Applications, 2017, Vol. 11, No. 7, pp. 1006-1015.
[25] L. Chen, Y. Chai and R. Wu, " Stability and stabilization of a class of nonlinear fractional-order systems with Caputo derivative", IEEE Transactions on Circuits and Systems,2012, Vol. 59, No. 9, pp. 602-606.
[26] Y. Zhao, Y. Wang and X. Zhang, " Feedback stabilization control design for fractional order non-linear systems in the lower triangular form", IET Control Theory & Applications,2016, Vol. 10, No. 9, pp. 1061-1068.
[27] Y. Li, Y. Chen and I. Podlubny, " Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability", Computers & Mathematics with Applications,2010, Vol. 59, No. 5, pp. 1810-1821.
[28] Y. Li, Y. Chen and I. Podlubny, " Mittag–Leffler stability of fractional-order nonlinear dynamic systems", Automatica, 2009, Vol. 45, No. 8, pp. 1965-1969.
[29] Q. Xiao, Z. Zeng, "Lagrange stability for T–S fuzzy memristive neural networks with time-varying delays on time scales", IEEE Transactions on Fuzzy Systems, Vol. 26, No. 3,2017, pp. 1091-1103.
[30] L. Bakule, "Decentralized control: An overview. Annual reviews in control", Vol. 32, No. 1, 2008, pp. 87-98.
[31] V. Badri, M. S. Tavazoei, " Stability analysis of fractional order time-delay systems: constructing new Lyapunov functions from those of integer order counterparts", IET Control Theory & Applications, Vol. 13, No. 15,2019, pp. 2476-2481.
[32] J.Wloszek, Z. William. “ Lyapunov based analysis and controller synthesis for polynomial systems using sum-of-squares optimization”. University of California, Berkeley, 2003.
[33]Y. Li, Y. Chen and I. Podlubny "  Mittag–Leffler stability of fractional order nonlinear dynamic systems ", Automatica,2009, Vol. 48, No. 5, pp. 1965-1969.