کنترل تحمل پذیر عیب در توربین‌های بادی با استفاده از کنترل‌کننده مُدلغزشی فازی

نوع مقاله : مقاله برق

نویسندگان

1 گروه مهندسی کامپیوتر- مکاترونیک، دانشکده مکانیک، برق و کامپیوتر، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران

2 استادیار، گروه مهندسی کامپیوتر- مکاترونیک، دانشکده مکانیک، برق و کامپیوتر، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

3 گروه مهندسی برق دانشگاه شاهد

چکیده

این مقاله به طراحی کنترل‌کننده مقاوم برای توربین‌های بادی با استفاده از کنترل‌کننده ترکیبی مدلغزشی فازی پرداخته است. با توجه به رشد روزافزون بهره‌گیری از توربین‌های بادی و اهمیت قابلیت اطمینان و کارایی این سیستم‌ها، در این مقاله تحمل‌پذیری سیستم توربین بادی با استفاده از ترکیب روشهای کنترل کلاسیک غیرخطی و هوشمند در برابر رخداد عیب‌های احتمالی مورد بررسی قرار گرفته است. سیستم توربین بادی ژنراتور سنکرون مغناطیس دائم در این مقاله مورد مطالعه قرار گرفته است. در طراحی کنترل‌کننده تحمل‌پذیر عیب از ترکیب کنترل‌کننده مدلغزشی بر پایه قانون دستیابی نمایی پیشرفته و سیستم فازی استفاده شده است و هدف کنترلی، ردیابی ورودی مرجع است در شرایطی که سیستم تحت شرایط رخداد عیب قرار دارد. همچنین، کنترل‌کننده طراحی شده قابلیت کاهش پدیده وزوز را نیز دارا می‌باشد. برای بررسی کارایی سیستم کنترلی پیشنهادی، از عیب‌های شبیه‌سازی شده با ویژگیهای مختلف نظیر دامنه، زمان رخداد و سرعت تغییر دینامیکی استفاده شده است. نتایج ارزیابی نشان می‌دهدکه کنترل‌کننده طراحی شده در مقابل رخداد عیب سنسور و عیب عملگر در سیستم توربین بادی مقاوم است. همچنین، تنظیم ولتاژ خروجی به مقدار مرجع ثابت به خوبی صورت می‌پذیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Fault Tolerant Control of Wind Turbine Systems using Fuzzy Sliding Mode Control

نویسندگان [English]

  • Parisa Rezaei 1
  • Faezeh Farivar 2
  • Mohammad Manthouri 3
1 Department of Computer and Mechatronics Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Department of Computer and Mechatronics Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 Department of Electrical and Electronic Engineering, Shahed University, Tehran, Iran
چکیده [English]

This paper designs a robust control system for wind turbines using a fuzzy sliding mode controller. Due to the increasing use of wind turbines and the importance of reliability and efficiency of these systems, in this paper the tolerance of wind turbine system using a combination of classical nonlinear and intelligent control methods against the occurrence of possible faults has been investigated. The wind turbine system based on the permanent magnet synchronous generator has been studied in this paper. In the design of the fault tolerant controller, a combination of the sliding mode controller based on advanced exponential acquisition law and fuzzy system is employed and the control goal is to track the reference input when the system is under fault conditions. Also, the designed controller is able to reduce the chattering phenomenon. To evaluate the performance of the proposed control system, simulated faults with different characteristics such as amplitude, occurrence time and dynamic change speed have been developed. Results confirm that the designed controller is robust against to actuator faults in the wind turbine system. Also, the output voltage is perfectly set to the constant reference value.

کلیدواژه‌ها [English]

  • Fault-tolerant control
  • fuzzy system
  • sliding mode control
  • wind turbine
[1] K. E. Johnson and P. A. Fleming, "Development, implementation, and testing of fault detection strategies on the National Wind Technology Center’s controls advanced research turbines", Mechatronics, Vol. 21, NO. 4, 2011, pp. 728–736.
[2] S. Simani, "Overview of modelling and advanced control strategies for wind turbine systems", Energies, Vol. 8, NO. 12, 2015, pp. 13395–13418.
[3] F. Shi and R. Patton, "An active fault tolerant control approach to an offshore wind turbine model", Renewable Energy, Vol. 75, 2015, pp. 788–798.
[4] S. Faulstich, B. Hahn, and P. J. Tavner, "Wind turbine downtime and its importance for offshore deployment", Wind Energy, Vol. 14, NO. 3, 2011, pp. 327–337.
[5] Y. Qiu, H. Jiang, Y. Feng, M. Cao, Y. Zhao, and D. Li, "A New Fault Diagnosis Algorithm for PMSG Wind Turbine Power Converters under Variable Wind Speed Conditions", Energies, Vol. 9, NO. 7, 2016, pp. 548.
[6] N. M. A. Freire and A. J. M. Cardoso, "Fault-Tolerant PMSG drive with reduced dc-link ratings for wind turbine applications", IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 2, NO. 1, 2013, pp. 26–34.
[7] S. M. Mozayan, M. Saad, H. Vahedi, H. Fortin-Blanchette, and M. Soltani, "Sliding Mode Control of PMSG Wind Turbine Based on Enhanced Exponential Reaching Law", IEEE Transactions on Industrial Electronics, Vol. 63, NO. 10, 2016, pp. 6148–6159.
[8] M. Nasiri, J. Milimonfared, and S. H. Fathi, "Robust control of PMSG-based wind turbine under grid fault conditions", Indian Journal of Science and Technology, Vol. 8, NO. 13, 2015, pp. 1–13.
[9] S. Hesari and M. N. Azghandi, "Maximum power extraction from permanent magnet synchronous generator in wind power energy systems using Type-2 Fuzzy Logic", International Journal of Mechanical Engineering and Robotics Research, Vol. 7, NO. 4, 2018, pp. 392–400.
[10] S. Simani and C. Turhan, "Fault Diagnosis of a Wind Turbine Simulated Model via Neural Networks", IFAC-PapersOnLine, Vol. 51, NO. 24, 2018, pp. 381–388.
[11] S. Cho, Z. Gao, and T. Moan, "Model-based fault detection, fault isolation and fault-tolerant control of a blade pitch system in floating wind turbines", Renewable energy, Vol. 120, 2018, pp. 306–321.
[12] B. Yang et al., "Passivity-based sliding-mode control design for optimal power extraction of a PMSG based variable speed wind turbine", Renewable energy, Vol. 119, 2018, pp. 577–589.
[13] H. Benbouhenni, "Comparative Study Between Direct Vector Control and Fuzzy Sliding Mode Controller in Three-Level Space Vector Modulation Inverter of Reactive and Active Power Command of DFIG-Based Wind Turbine Systems", International Journal Of Smart Grid, Vol.2, NO.4, 2018, pp. 188–196.
[14] A. Azizi, H. Nourisola, and S. Shoja-Majidabad, "Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller", Renewable energy, Vol. 135, 2019, pp. 55–65.
[15] M. Benmeziane, S. Zebirate, A. Chaker, and Z. Boudjema, "Fuzzy sliding mode control of doubly-fed induction generator driven by wind turbine", International Journal of Power Electronics and Drive System, Vol. 10, NO. 3, 2019, pp. 1592–1602.
[16] N. Bounar, S. Labdai, and A. Boulkroune, "PSO–GSA based fuzzy sliding mode controller for DFIG-based wind turbine", ISA transactions , Vol. 85, 2019, pp. 177–188.
[17] S. Sumbekov, B. D. H. Phuc, and T. D. Do, "Takagi–Sugeno fuzzy-based integral sliding mode control for wind energy conversion systems with disturbance observer", Electrical Engineering, Vol. 102, NO. 3, 2020, pp. 1141–1151.
[18] L. Pan and X. Wang, "Variable pitch control on direct-driven PMSG for offshore wind turbine using Repetitive-TS fuzzy PID control", Renewable Energy 159, Vol. 159, 2020, pp. 221–237.
[19] C. Kim and W. Kim, "Coordinated Fuzzy-Based Low-Voltage Ride-Through Control for PMSG Wind Turbines and Energy Storage Systems", IEEE Access, Vol. 8, 2020, pp. 105874–105885.
[20] Y. El Mourabit, A. Derouich, A. El Ghzizal, N. El Ouanjli, and O. Zamzoum, "Nonlinear backstepping control for PMSG wind turbine used on the real wind profile of the Dakhla-Morocco city", International Transactions on Electrical Energy Systems, Vol. 30, NO. 4, 2020, pp.12297.
[21] R. Bolbolnia, E. Heydari, and K. Abbaszadeh, "Fault Tolerant Control in Direct-Drive PMSG Wind Turbine Systems under Open-Circuit Faults", The 11th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2020, 2020, pp.1–5.
[22] A. Chand, L. Khan, Q. Khan, Z. A. Khan, A. Ur Rehman, and S. Ahmed, "Robust Fault Diagnosis and Fault Tolerant MPPT Control of PMSG-WECS using Certainty Equivalence Principle", The 3rd International Conference on Computing, Mathematics and Engineering Technologies: Idea to Innovation for Building the Knowledge Economy, iCoMET 2020, 2020, pp.1–6.
[23] A. Fekih, S. Mobayen, and C. C. Chen, "Adaptive robust fault-tolerant control design for wind turbines subject to pitch actuator faults", Energies, Vol. 14, NO. 6, 2021, pp. 1791.
[24] R. Pourebrahim, A. M. Shotorbani, F. P. G. Márquez, S. Tohidi, and B. Mohammadi-Ivatloo, "Robust control of a PMSG-based wind turbine generator using lyapunov function", Energies, Vol. 14, NO. 6, 2021, pp. 1712.
[25] M. H. Qais, H. M. Hasanien, and S. Alghuwainem, "A novel LMSRE-based adaptive PI control scheme for grid-integrated PMSG-based variable-speed wind turbine", International Journal of Electrical Power & Energy Systems, Vol. 125, 2021, pp. 106505.
[26] A. Dali, S. Abdelmalek, A. Bakdi, and M. Bettayeb, "A new robust control scheme: Application for MPP tracking of a PMSG-based variable-speed wind turbine", Renewable Energy, Vol. 172, 2021, pp. 1021–1034.
[27] Y. Li, X. Yuan, J. Li, H. Xiao, Z. Xu, and Z. Du, "Novel grid-forming control of PMSG-based wind turbine for integrating weak AC grid without sacrificing maximum power point tracking", IET Generation, Transmission & Distribution, Vol. 15, NO. 10, 2021, pp. 1613–1625.
[28] Z. Liu, T. Tang, A. Houari, M. Machmoum, and M. F. Benkhoris, "An ftc design via multiple sogis with suppression of harmonic disturbances for five-phase pmsg-based tidal current applications", Journal of Marine Science and Engineering, Vol. 9, NO. 6, 2021, pp. 574.
]29 [مسعود اسماعیلی، مصطفی صدقی زاده، حسام یار محمدی، "کنترل یکپارچه ژنراتور القایی، محدودکننده جریان خطا و ذخیره ساز انرژی در مزارع بادی"،  نشریه مدل‌سازی در مهندسی، دوره 16 ، شماره 55 ، زمستان1397، صفحه ۸۸-۱۰۰.
]30 [سامان احمدی، ایمان پورفر، امین ساکی، "مدلسازی مزرعه بادی مجهز به ژنراتور القایی دوسوتغذیه با معادل سازی بخش مکانیکی با استفاده از خوشه‌بندی بر اساس ضریب جذب توان"، نشریه مدل‌سازی در مهندسی، دوره 18 ، شماره 60 ، بهار 1399، صفحه 169-۱82.
]31 [الهه زکی خانی، مهدی صمدی، محمد ابراهیم حاجی آبادی، "ارائه‌ی مدلی تحلیلی جهت تعیین اثرات پارامترهای توربین بادی و مشخصه احتمالی سرعت باد بر میانگین قیمت گره‌ای بازار برق"، نشریه مدل‌سازی در مهندسی، دوره 18، شماره 62 ، پائیز 1399، صفحه 31-42.
[32] J. V. Ringwood and S. Simani, "Overview of modelling and control strategies for wind turbines and wave energy devices: Comparisons and contrasts", Annual Reviews in Control, Vol. 40., 2015, pp. 27–49.
[33] JJ. Slotine and W. Li, Applied nonlinear control, Englewood Cliffs, NJ: Prentice hall; 1991.
[34] W. Gao and J. C. Hung, "Variable Structure Control of Nonlinear Systems: A New Approach", IEEE transactions on Industrial Electronics, Vol. 40, NO. 1, 1993, pp. 45–55.
[35] C. J. Fallaha, M. Saad, H. Y. Kanaan, and K. Al-Haddad, "Sliding-mode robot control with exponential reaching law", IEEE Transactions on industrial electronics, Vol. 58, NO. 2, 2011, pp. 600–610.