بررسی مدل عددی مناسب جهت شبیه سازی ایرفویل های ریشه توربین بادی محور افقی

نوع مقاله : مقاله مکانیک

نویسندگان

1 دانشجوی کارشناسی ارشد

2 گروه مهندسی هوافضا، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد گرمسار

چکیده

در این تحقیق جریان هوا حول یک مدل ایرفویل ریشه توربین بادی با عنوان SG6040 با روش حجم محدود، توسط سه مدل آشفتگی کاامگا، کا امگا اس اس تی و اسپالارت آلماراس، در دو عدد رینولدز 137.122 و 149.969 و در زوایای حمله صفر تا 10 درجه شبیه‌سازی گردیده است. هدف اصلی در این مقاله ارائه مدل عددی مناسب جهت شبیه‌سازی ایرفویل‌های ریشه توربین‌های بادی با اندازه روتور کوچک می باشد. همچنین، اثرات زاویه حمله و عدد رینولدز بر روی ضرایب آیرودینامیکی مورد بررسی قرار گرفته و نتایج با یکدیگر مقایسه گردیده است. نتایج نشان می‌دهد که مدل آشفتگی k-ω SST نتایج بهتری را نسبت به دیگر مدل‌ها دارا می-باشد و با نتایج تجربی همخوانی بیشتری دارد. همچنین، با افزایش عدد رینولدز مدل‌های آشفتگی روند یکسان‌تری دارند و بیشترین اختلاف بین مدل‌ها در رینولدز های پایین اتفاق می‌افتد. نتایج بدست آمده در این مطالعه می‌تواند در راستای طراحی پره‌های توربین بادی و همچنین به منظور استفاده از مدل‌سازی عددی مناسب نقش بسزایی را ایفا نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Appropriate Numerical Modelling for Simulation of Root Airfoils of Horizontal Axis Wind Turbine

نویسندگان [English]

  • Sajjad Pourhabili 1
  • Reza Razaghi 2
1 دانشگاه آزاد اسلامی واحد گرمسار
2 عضو هیأت غلمی تمام وقت
چکیده [English]

In this paper, the air flow around a root airfoil model of horizontal axis wind turbine, namely SG6040 is numerically simulated using finite volume method by three turbulence modelling k-ω, k-ω SST, and Spalart-Allmaras in two Reynolds Number of 137,122 and 149,969 and at 0 to 10 degrees angles of attack. The main objective of this paper is to provide a proper numerical model for simulating the root airfoils of wind turbines with small rotor sizes. Also, the effect of angles of attack and Reynolds number on aerodynamic coefficients were investigated and the results were compared with each other. The results show that the k-ω SST turbulence model presents better results than other models and is more consistent with experimental results. Also, by increasing Reynolds number, turbulence models seem to have the same trend and the greatest differences occur in the low Reynolds numbers. The results obtained in this case study can play a significant role in designing wind turbine blades.

کلیدواژه‌ها [English]

  • Numerical Modelling
  • Root Airfoil of Wind Turbine
  • Turbulence Modelling
  • SG6040 Airfoil
[1] M.Jahani Miri, A.SH.Rezvani, "Numerical analysis of flow in a vertical wind turbine direct drive axis and check The effect of increasing the thickness of the blade on the aerodynamic coefficients and the performance of these turbines", Int. conf. Aerospace Eng., 2015, pp. 664-668.
[2]  علی افتخاری، "تحلیل و بهینه سازی توزیع فشار در یک شیرکنترلی"، نشریه مدل سازی در مهندسی، دوره 14، شماره 45، تابستان 1395، صفحه 93-98.
[3] محمد حسن جوارشکیان و هادی دستورانی، "بررسی آیرودینامیکی جریان پتانسیل روی هواپیماهای بال و بدنه یکپارچه"، نشریه مدل سازی در مهندسی، دوره 14، شماره 47، زمستان 1395، صفحه 127-140.
[4] سید هادی قادری، احسان حاجی اسماعیلی، "الگوریتم چینش بهینه پره‌های توربین با در نظر گرفتن نامیزانی اولیه دیسک" نشریه  مدل سازی در مهندسی، دوره 14، شماره 47، زمستان 1395، صفحه 115-125.
[5] Rahimi, H., Medjroubi, W., Stoevesandt, B., & Peinke, J.,"Numerical investigation of the laminar and turbulent flow over different airfoils using openfoam", Int. Journal of Physics: Conference Series, Vol. 555, No. 1, 2014, p. 012070.
[6] Yao, J., Yuan, W., Xie, J., Zhou, H., Peng, M., & Sun, Y., "Numerical simulation of aerodynamic performance for two dimensional wind turbine airfoils", Procedia Engineering, Vol. 31, 2012, pp. 80-86.
[7] Sayed, M.A., Kandil, H.A., & Shaltot, A., "Aerodynamic analysis of different wind-turbine-blade profiles using finite-volume method", Journal of Energy conversion and Management, Vol. 64, 2012, pp. 541-550.
[8] Esfahanian, V., Pour, A.S., Harsini, I., Haghani, A., Pasandeh, R., Shahbazi, A., & Ahmadi, G., "Numerical analysis of flow field around NREL Phase II wind turbine by a hybrid CFD/BEM method", Journal of Wind Engineering and Industrial Aerodynamics, Vol. 120, 2012, pp. 29-36.
[9] Xu, H., Xing, S., & Ye, Z., "Numerical simulation of the effect of a co-flow jet on the wind turbine airfoil aerodynamic characteristics", Journal of Procedia Engineering, Vol. 126, 2015, pp.706-710.
[10] Maldonado, V., Castillo, L., Thormann, A., & Meneveau, C., "The role of free stream turbulence with large integral scale on the aerodynamic performance of an experimental low Reynolds number S809 wind turbine blade", Journal of Wind Engineering and Industrial Aerodynamics, Vol. 142, 2015, 246-257.
[11] Derakhsahan, S. and Tavazziani, A., "Study of wind turbine aerodynamic performance using numerical methods", Journal of Clean Energy Technology, Vol. 3, No. 2, 2015, pp.83-90.
[12] Li, Q. A., Kamada, Y., Maeda, T., Murata, J., & Nishida, Y., "Effect of turbulent inflows on airfoil performance for a Horizontal Axis Wind Turbine at low Reynolds numbers (part I: Static pressure measurement)", Journal of Energy, Vol. 111, 2016, pp. 701-712.
[13] Zhang, L., Li, X., Yang, K., & Xue, D., "Effects of vortex generators on aerodynamic performance of thick wind turbine airfoils", Journal of Wind Engineering and Industrial Aerodynamics, Vol. 156, 2016, pp. 84-92.
[14] Belamadi, R., Djemili, A., Ilinca, A., & Mdouki, R., "Aerodynamic performance analysis of slotted airfoils for application to wind turbine blades", Journal of Wind Engineering and Industrial Aerodynamics, Vol. 151, 2016, pp.79-99.
[15] A.Lyon, A,P,Broeren, P.Giguere, A.Gopalarathnam, and M,S,Selig, "Summary of Low-Speed Airfoil Data", Department of Aeronautical and Astronautical Engineering University of Illinois at Urbana-Champaign, Vol, 3. 1997.