[1] Eva Lieskovská, Maroš Jakubec, Roman Jarina and Michal Chmulík, “A Review on Speech Emotion Recognition Using Deep Learning and Attention Mechanism,” in Electronics, May. 2021.
[2] Akçay, M.B.; O˘guz, K. Speech emotion recognition: Emotional models, databases, features, preprocessing methods, supporting modalities, and classifiers. Speech Communication, 2020, pp.116, 56–76.
[3] C. Sima and E. R. Dougherty, “The peaking phenomenon in the presence of feature-selection,” Pattern
Recognition Letter , vol. 29, no. 11, 2008, pp. 1667–1674.
[4] J. Rong, G. Li, and Y.-P. P. Chen, “Acoustic feature selection for automatic emotion recognition from speech,”
Information Processing & Management, vol. 45, no. 3, 2009, pp. 315–328.
[5] F. Eyben, F. Weninger, F. Gross, and B. Schuller, “Recent developments in openSMILE, the Munich open-source multimedia feature extractor,” in Proc. 21st ACM International Conference on Multimedia, 2013, pp. 835–838.
[6] S. N. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu, “A unified framework for high-dimensional analysis of M-estimators with decomposable regularizes,” statistical science, vol. 27, no. 4, Nov 2012, pp. 538–557.
[8] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio. “Generative adversarial nets”. In: Advances in neural information processing systems, 2014.
[9] E. Bozkurt, E. Erzin, Ç. E. Erdem, and A. T. Erdem, “Formant position based weighted spectral features for emotion recognition,” Speech Communication., vol. 53, no. 9, 2011, pp. 1186–1197.
[10] S. Wu, T. H. Falk, and W.-Y. Chan, “Automatic speech emotion recognition using modulation spectral features,” Speech Communication, vol. 53, no. 5, 2011, pp. 768–785.
[11] P. Laukka, D. Neiberg, M. Forsell, I. Karlsson, and K. Elenius, “Expression of effect in spontaneous speech: Acoustic correlates and automatic detection of irritation and resignation,” Computer Speech & Language, vol. 25, no. 1, 2011, pp. 84–104.
[12] H. Pérez-Espinosa, C. A. Reyes-García, and L. Villaseñor-Pineda, “Acoustic feature selection and classification of emotions in speech using a 3D continuous emotion model,” Biomed. Signal Process. Control, vol. 7, no. 1, 2012, pp. 79–87.
[13] علی حریمی، علیرضا احمدی فرد، علی شهزادی و خشایار یغمایی، "تشخیص احساس از روی گفتار با استفاده از طبقهبند مبتنی بر مدل و ویژگی های دینامیکی غیر خطی"، نشریه
مهندسی برق و مهندسی کامپیوتر ایران، دوره 15، شماره 2، تابستان 1396، صفحه 152-145.
[14] K. Han, D. Yu, and I. Tashev, Speech Emotion Recognition Using Deep Neural Network and Extreme Learning Machine., vol. 3, 2014, pp. 232–243.
[15] H. Palo and M. Mohanty, “Modified-VQ Features for Speech Emotion Recognition,” Journal of Mathematical Sciences, vol. 16,Sep 2016, pp. 406–418.
[16] B. Schuller, R. Müller, M. Lang, and G. Rigoll, Speaker independent emotion recognition by early fusion of acoustic and linguistic features within ensembles., vol. 2, 2005, pp. 565–572.
[17] I. Luengo, E. Navas, and I. Hernáez, “Feature Analysis and Evaluation for Automatic Emotion Identification in Speech,” Multimedia, IEEE transaction, vol. 12, Nov 2010, pp. 490–501.
[18] D. Gharavian, M. Sheikhan, and F. Ashoftedel, “Emotion recognition improvement using normalized formant supplementary features by a hybrid of DTW-MLP-GMM model,” Neural Computing & Applications, vol. 22, no. 6, 2013, pp. 1181–1191.
[19] X. Zhao, S. Zhang, and B. Lei, “Robust emotion recognition in a noisy speech via sparse representation,” Neural Computing & Applications, vol. 24, Jun. 2013.
[20] H. Hu, T. Tan, and Y. Qian, “Generative adversarial network-based data augmentation for noise-robust speech recognition,” in Proc. The international Conference on Acoustics, Speech, & Signal Processing (ICASSP), Apr 2018, pp. 5044–5048.
[21] A. Harimi and Kh. Yaghmaie, “improving speech emotion recognition via gender classification,” in Journal of Modeling in Engineering., vol.48, 2017, pp. 184–200.
[22] M. Sadeghi, H. Marvi and A. Ahmadifard “A New and Efficient Feature Extraction Method for Robust Speech Recognition Based on Fractional Fourier Transform and Differential Evolution Optimizer,” in Journal of Modeling in Engineering., vol.61, 2020, pp. 86–96.
[23] سیدعلی سلیمانی ایوری، محمدرضا فدوی امیری و حسین مروی، "تولید سیگنال مصنوعی زلزله بهکمک مدلی جدید در فشردهسازی و آموزش شبکههای عصبی مصنوعی"، نشریه مدلسازی در مهندسی، دوره 14، شماره 46، پائیز 1395، صفحه 85-75.
[25] J. Chang, S. Scherer. “Learning representations of emotional speech with deep convolutional generative adversarial networks”. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017.
[26] F. Eyben, F. Weninger, F. Gross and B. Schuller. “Recent developments in openSMILE, the Munich open-source multimedia feature extractor”. In: Proc. 21st ACM international conference on Multimedia. ACM, vol. 5, 2013, pp. 232–240.
[27] I. Goodfellow. “NIPS 2016 tutorial: Generative adversarial networks”. In: arXiv preprint arXiv:1701.00160, 2016.
[28] F. Bao, M. Neumann, and N. T. Vu, “Cyclegan-based emotion style transfer as data augmentation for speech emotion recognition.” In Interspeech, 2019, pp. 2828–2832.
[29] W. Y. Zhao, “Discriminant component analysis for face recognition,” in Proceeding’s 15th International Conference on Pattern Recognition. ICPR-2000, vol. 2, 2000, pp. 818–821.
[30] F. Burkhardt, A. Paeschke, M. Rolfes, W. F. Sendlmeier, and B. Weiss, “A database of German emotional speech,” in Proc. 9th European Conference on Speech Communication and Technology , 2005, pp 1–4.
[31] B. Yang and M. Lugger, “Emotion recognition from speech signals using new harmony features,” Signal Processing, vol. 90, no. 5, 2010, pp. 1415–1423.
[32] I. Luengo, E. Navas, and I. Hernáez, “Feature Analysis and Evaluation for Automatic Emotion Identification in Speech,” Multimedia, IEEE transaction, vol. 12, Nov 2010, pp. 490–501.
[33] G. Paraskevopoulos, E. Tzinis, N. Ellinas, T. Giannakopoulos, and A. Potamianos, “Unsupervised low-rank representations for speech emotion recognition,” Proc. Interspeech 2019, 2019, pp. 939–943.
[34] S. Sahu, R. Gupta, and C. Espy-Wilson, “On enhancing speech emotion recognition using generative adversarial networks,” Proc. Interspeech 2018, 2018, pp. 3693–3697.
[35] S. Latif , M. Asim, R. Rana, S. Khalifa, R. Jurdak and B.W. Schuller, “Augmenting Generative Adversarial Networks for Speech Emotion Recognition, ” Proc. Interspeech, 521-525, doi: 10.21437/Interspeech.2020-3194, 2020.