مساله چند هدفه تجدیدارایش شبکه توزیع در حضور بهینه منابع تولید پراکنده و واحدهای خازنی در سیستم توزیع با توجه به اهمیت حفظ ولتاژ

نوع مقاله : مقاله برق

نویسندگان

1 گروه مهندسی برق، دانشگاه ازاد نیشابور

2 دانشکده فنی و مهندسی، واحد نیشابور، دانشگاه آزاد اسلامی، نیشابور، ایران.

3 گروه برق/ دانشکده مهندسی/ دانشگاه آزاد اسلامی مشهد/ مشهد/ ایران

4 دانشگاه حکیم سبزواری

چکیده

تجدید ارایش فیدرهای شبکه توزیع یکی از راهبردهای شناخته شده و مؤثر در شبکه توزیع است که به منظور بدست آوردن یک پیکربندی بهینه جدید برای فیدرهای توزیع با مدیریت وضعیت سوئیچ ها در شبکه توزیع انجام میگیرد. در این مطالعه، مساله چند هدفه تجدید ارایش شبکه توزیع در حضور بهینه منابع تولید پراکنده و واحدهای خازنی در قالب چند هدفه فرموله شده است. توابع هدف متداول در مساله تجدید ارایش شامل تلفات توان و انحراف ولتاژ میباشندکه اهداف مهمی در سیستم های توزیع سنتی هستند، معمولا به توابع هدف قابلیت اطمینان و حفظ ولتاژ توجه کمتری شده است. از این رو اهدف اصلی این مطالعه بهبود قابلیت اطمینان و حفظ ولتاژ از طریق حل مساله تجدید ارایش فیدرهای توزیع میباشد.به همین منظور، شاخص انرژی توزیع نشده و شاخص پایداری ولتاژ به عنوان توابع هدف قابلیت اطمینان و حفظ ولتاژ تعریف شده اند. پیچیدگیهای ذاتی مساله تجدید ارایش شبکه توزیع، ارائه یک راه حل کاربردی و مقاوم به منظور غلبه بر پیچیدگی های این مساله را تبدیل به یک چالش جدی کرده است، به همین منظور، الگوریتم بهینه سازی بهبود یافته جستجوی گرانشی برای حل این مساله بهینه سازی ارائه شده است. به منظور نشان دادن کارایی روش پیشنهادی، بر روی سیستم تست 33 باسه تست شده است، همچنین نتایج حاصل از بهینه سازی با نتایج سایر الگوریتم های تکاملی از قبیل اجتماع ذرات و جهش قورباغه مقایسه شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Multi-objective feeder reconfiguration problem in the presence of distributed generation sources and capacitors units considering network voltage Security

نویسندگان [English]

  • Benyamin Katanchi 1
  • Aliasghar Shojaei 2
  • Mahdi Yaghoobi 3
  • Hossein Lotfi 4
1 Department of Electrical Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
2 Department of Electrical Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
3 Electrical Engineering Dep./ Islamic Azad University of Mashhad/ Mashhad/ Iran
4 Department of Electrical and Computer Engineering, Hakim Sabzevari University, Sabzevar
چکیده [English]

Distribution network reconfiguration is one of the well-known and effective strategies in the distribution networks which performs by the status management of the network switches in order to obtain a new optimal configuration for the feeders. This study formulates multi-objective distribution feeder reconfiguration in the presence of distributed generators and capacitors. Common objective functions in the Distribution network reconfiguration problem include power losses and voltage deviations, which are important goals in traditional distribution systems. Usually, less attention has been paid to the reliability and voltage security target functions. Therefore, the main objectives of this study are to improve the reliability and maintenance of voltage by solving the problem of Distribution network reconfiguration. The inherent complexities of the distribution network rearrangement problem have made it a serious challenge to provide a practical and robust solution to overcome the complexities of this problem, therefore, the improved gravitational search optimization algorithm to solve this problem Has been. In order to show the efficiency of the proposed method, it has been tested on a 33-bus test system.and the results are compared with the

results of using other evolutionary algorithms, such as particle

swarm optimization and shuffled frog leaping

کلیدواژه‌ها [English]

  • Feeder reconfiguration
  • Distributed generation
  • Voltage security
  • Modified gravitational search
  • Azizivahed, H. Lotfi, M. J. Ghadi, S. Ghavidel, L. Li, and J. Zhang, “Dynamic feeder reconfiguration in automated distribution network integrated with renewable energy sources with respect to the economic aspect,” IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia) conference, IEEE, 2019, pp. 2666–2671.
  • Rani, D.S., N. Subrahmanyam, and M. Sydulu, “Multi-objective invasive weed optimization–an application to optimal network reconfiguration in radial distribution systems,” International Journal of Electrical Power & Energy Systems, vol. 73, 2015, pp. 932-942.
  • Niknam, “An efficient hybrid evolutionary algorithm based on PSO and HBMO algorithms for multi-objective distribution feeder reconfiguration,” Energy Convers. Manage, vol. 50, no. 8, 2009, pp. 2074–2082.
  • Alonso, F., D. Oliveira, and A.Z. de Souza, “Artificial immune systems optimization approach for multi-objective distribution system reconfiguration” IEEE Transactions on Power Systems, vol. 30, no. 2, 2015, pp. 840-847.
  • Roberge, V., M. Tarbouchi, and F. Okou. “New encoding based on the minimum spanning tree for distribution feeder reconfiguration using a genetic algorithm,” International Conference on Electrical and Information Technologies (ICEIT), IEEE, May 2016.
  • Parizad, A., H. R. Baghaee, Amirnaser Yazdani, G. B. Gharehpetian, “Optimal distribution systems reconfiguration for short circuit level reduction using PSO algorithm,” IEEE Power and Energy Conference at Illinois (PECI). IEEE, April 2018.
  • Reddy, A.S., M.D. Reddy, and Y.K. Reddy, “Feeder Reconfiguration of Distribution Systems for Loss Reduction and Emissions Reduction using MVO Algorithm,” Majlesi Journal of Electrical Engineering, vol. 12, no. 2, 2018, pp. 1-8.
  • Landeros, A., S. Koziel, and M.F. Abdel-Fattah, “Distribution network reconfiguration using feasibility-preserving evolutionary optimization,” Journal of Modern Power Systems and Clean Energy, 2019. 7(3): p. 589-598.
  • Pegado, R., Zocimo Ñaupari , Yuri Molina , Carlos Castillo, “Radial distribution network reconfiguration for power losses reduction based on improved selective BPSO,” Electric Power Systems Research, vol. 169, 2019, pp. 206-213.

[10] Jazebi, S., Vahidi, B., “Reconfiguration of distribution networks to mitigate utilities power quality disturbances,” Electric Power Systems Research, vol. 91, 2012, pp. 9– 17

[11] Olamaei, j., Niknam, T., and badali, S. “Distribution Feeder Reconfiguration for Loss Minimization Based on Modified Honey Bee Mating Optimization Algorithm,” Energy Procedia, 2012 ,14, pp.304 – 311

[12] H. Lotfi, “Optimal sizing of distributed generation units and shunt capacitors in the distribution system considering uncertainty resources by the modified evolutionary algorithm,” Journal of Ambient Intelligence and Humanized Computing, vol. 13, 2022, pp. 4739-58.

[13] Narimani, M. R., Azizivahed, A., Javid sharifi, M. “Enhanced gravitational search algorithm for multi-objective distribution feeder reconfiguration considering reliability, loss and operational cost,” IET Generation, Transmission & Distribution, vol, 8, no. 1, 2014. pp. 55-69.

[14] Azizivahed, A., Hossein Narimani, Ehsan Naderi, Mehdi Fathi, Mohammad Rasoul Narimani, “A hybrid evolutionary algorithm for secure multi-objective distribution feeder reconfiguration,” Energy, vol. 138, 2017, pp. 355-373.

[15] Roosta, A., H.-R. Eskandari, and M.-H. Khooban, “Optimization of radial unbalanced distribution networks in the presence of distribution generation units by network reconfiguration using harmony search algorithm,” Neural Computing and Applications, vol. 31, no. 11, 2019, pp. 7095-09.

[16] Srinivasa Rao, R., Ravindra, K., Satish, K., Narasimham. S. V. L. “Power Loss Minimization in Distribution System Using Network Reconfiguration in the Presence of Distributed Generation,” IEEE Transactions on Power systems, vol. 28, no. 1, 2013, pp.317-325.

[17] Mahboubi-Moghaddam, E., Narimani, M. R., Khooban, M. H, Azizivahed, A., Javid sharifi, M. “Multi-objective distribution feeder reconfiguration to improve transient stability, and minimize power loss and operation cost using an enhanced evolutionary algorithm at the presence of distributed generations,” Electrical Power and Energy Systems, vol.76, 2016, pp.35–43.

[18] J. Siahbalaee, N. Rezanejad, and G. B. Gharehpetian, “Reconfiguration and DG sizing and placement using improved shuffled frog leaping algorithm,” Electric Power Components and Systems, vol. 47, no. 16-17, 2019, pp. 1475–1414.

[19] V. Fathi, H. Seyedi and B. M. Ivatloo, “Reconfiguration of distribution systems in the presence of distributed generation considering protective constraints and uncertainties,” International Transactions on Electrical Energy Systems, vol. 30, no. 5, 2020, pp. e12346.

[20] Hamouda, A. and S. Sayah, “Optimal capacitors sizing in distribution feeders using heuristic search-based node stability-indices,” International Journal of Electrical Power & Energy Systems, vol. 46, 2013, pp. 56-64.

[21] Sajjadi, S.M., M.-R. Haghifam, and J. Salehi, “Simultaneous placement of distributed generation and capacitors in distribution networks considering voltage stability index,” International Journal of Electrical Power & Energy Systems, vol. 46, 2013, pp. 366-375.

[22] H. Lotfi and R. Ghazi “Optimal participation of demand response aggregators in reconfigurable distribution  system considering photovoltaic and storage units,” Journal of Ambient Intelligence and Humanized Computing, vol. 12, no. 2, 2021, pp. 2223–2233.

[23] H. Lotfi, R. Ghazi, and M. B. Naghibi-Sistani, “Multi-objective dynamic distribution feeder reconfiguration along with capacitor allocation using a new hybrid evolutionary algorithm,” Energy Systems, vol. 11, no. 3, 2020, pp. 779–809.

[24] H. Lotfi, “Multi-objective energy management approach in distribution grid integrated with energy storage units considering the demand response program,” International journal of energy research, vol. 44, no. 13, 2020, pp. 10662–10681.

[25] رحیم فتحی، بهروز طوسی و سجاد گلوانی، " تخصیص بهینه منابع تجدیدپذیر در شبکه‌های توزیع با در نظر گرفتن عدم قطعیت بر اساس تئوری تصمیم‌گیری شکاف اطلاعاتی با استفاده از الگوریتم اجتماع سالپ بهبودیافته"، مجله مدلسازی در مهندسی، دوره 20 ، شماره 68 ، بهار 1401.

[26] قاسم میر بابایی، مسعود رادمهر و علیرضا ذکریازاده ، " مدلسازی مدیریت منابع انرژی پراکنده در ریزشبکه با استفاده از روش توزیع شده " دوره 17 ، شماره 57 ، تابستان 1398، صفحه 252-241.

[27] علی دهقانی و غلامرضا حسامیان، "یک روش پیشنهادی برای رتبه بندی فازی در تصمیم گیری چند شاخصه چند دوره ای در محیط فازی نوع 2"، مجله مدلسازی در مهندسی، دوره 17 ، شماره 59 ، زمستان 1398، صفحه 65-47.