مدلسازی مرتبه بالای شاک و اغتشاشات جریان تراکم پذیر با روش عددی WENO

نوع مقاله : مقاله مکانیک

نویسندگان

1 دانشجوی دکتری، دانشگاه مالک‌اشتر اصفهان، اصفهان

2 مکانیک مالک اشتر

3 استادیار، مرکز آموزش عالی شهرضا، دانشگاه اصفهان، اصفهان

چکیده

در این مقاله اثر استفاده از روش عددی مرتبه بالای ونو در آشکار سازی نوسانات ناشی از تداخل شاک-شاک و شاک-اغتشاش با رویکرد بهینه سازی روش عددی مورد بررسی قرار گرفته است. دو نسخه‌ی جدید از روش ونو اتا-زی با رویکرد بهینه‌سازی تابع همواری توسعه یافته است که به منظور رفتار بهینه در نقاط اکسترمم نسبی توسعه یافته است. کد عددی مورد آزمون‌های بسیاری واقع شده است، از جمله انواع لوله شاک یک و دو بعدی، مسأله لکس، مسأله شو-اشر، و مسائل تداخل شاک و اغتشاش. نتایج تعدادی از آزمون‌های یک و دو بعدی، به عنوان صحت‌سنجی کد در این مقاله ارائه شده است. در میان مسأله‌های حل شده، مسأله تداخل شاک-حباب نشاندهنده‌ی اتلاف عددی کمتر روش‌های خانواده توسعه‌یافته در مقایسه با روش مشابه ونو اتا-زی است. همچنین در مقایسه با دو روش مشابه همین خانواده، روش ارائه شده پایداری و تقارن بیشتری را نشان می‌دهد که امکان استفاده‌ی بهینه در مسائل کاربردی را افزایش می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

High order modeling of shocks and disturbances in compressible flows using WENO scheme

نویسندگان [English]

  • Mohamad Salehabadi 1
  • Mojtaba Dehghan Manshadi 2
  • Hamed Bagheri-Esfe 3
1 Ph.D Student
2 Professor
3 Assistant Professor
چکیده [English]

Two new higher order version of WENO schemes are introduces and problems are solved to investigate problems containing shocks and disturbances in compressible flow. The solver is capable of solving conservation laws using WENO scheme of up to 7th order. The scheme is a recently developed version of the WENO-η-z method with a modified Global Smoothness Indicator (GSI) of 12th order of accuracy, aimed to decrease numerical dissipation over critical points. The code is primarily investigated trough solving several 1D and 2D problems, including the Sod’s shock tub, Lax’s problem, the Shu-Osher problem, which some are presented here as verification. The 2-D shock-bobble interaction and Richtmyer-Meshkov instability are solved as problems including shocks and disturbances, in which proposed methods are compared with both original WENO- η-z and two similarly modified methodes from recent literature. In these problems, the introduced scheme shows lower dissipation in comparison with the original versions, while having more acceptable stability and symmetry against other modifien versions.

کلیدواژه‌ها [English]

  • High order scheme
  • Supersonic flow
  • shock-disturbance
  • numerical dissipation
  • smoothness indicator
  1. Ferziger JH. "Large eddy numerical simulations of turbulent flows". AIAA Journal,Vol. 15, NO. 5, Sep 1997, pp. 345 – 416
  2. Orszag SA, Israeli M. "Numerical simulation of viscous incompressible flows". Annual Review of Fluid Mechanics,Vol. 6, NO. 5, Sep 1974, pp. 281 – 318
  3. Ekaterinaris JA. "High-order accurate, low numerical diffusion methods for aerodynamics". Progress in Aerospace Sciences.Vol. 41, NO. 5 Apr 2005, pp. 192-300.
  4. Liu XD, Osher S, Chan T. "Weighted essentially non-oscillatory schemes." Journal of computational physics, Vol. 115, NO. 8 Nov 1994, pp. 200-12.
  5. Shu CW, Osher S. "Efficient implementation of essentially non-oscillatory shock-capturing schemes". Journal of computational physics, Vol. 77, NO. 9 Aug 1988, pp.39-71.
  6. Han SQ, Song WP, Han ZH. "An Improved WENO Method based on Gauss-kriging Reconstruction with an Optimized Hyper-Parameter." Journal of Computational Physics,Vol. 10, NO. 13 Aug 2020, pp. 56-82
  7. Wang Y, Du Y, Zhao K, Yuan L. "A new 6th-order WENO scheme with modified stencils." Computers & Fluids, Vol. 11, NO. 13, Jun 2020, pp. 104 – 130
  8. Anderson JD, Degrez G, Dick E, Grundmann R. "Computational fluid dynamics: an introduction." Springer Science & Business Media; Vol. 22, NO. 6, Mar 2013, pp. 151 – 170.
  9. Colonius T, Lele SK. "Computational aeroacoustics: progress on nonlinear problems of sound generation." Progress in Aerospace sciences,Vol. 17, NO. 5, August 2004, pp. 345 – 416.
  10. مهرداد بزاز زاده، مجتبی دهقان منشادی، امین نظریان شهربابکی، علی شهریاری "طراحی کنترلر بهینه فشار در یک تونل باد فراصوت دمشی با استفاده از الگوریتم ژنتیک" نشریه مدل‌سازی در مهندسی، دوره 14 شماره 47، زمستان1395، صفحه 155-169.
  11. مصطفی زاهد زاده، فتح اله امی" مطالعه عددی پاشش متقاطع جت‌های صوتی دو-مرحله ای در جریان عرضی مافوق صوت بعد از یک پله "نشریه مدل‌سازی در مهندسی، دوره 17، شماره 56، تابستان 1398، صفحه 281-291.
  12. قاسم حیدری نژاد، امیر محمد جدیدی " شبیه‌سازی نحوه پخش آلودگی در پشت یک ساختمان با استفاده از یک روش RANS-LES " نشریه مدل‌سازی در مهندسی، دوره 15، شماره 49، تابستان 1396، صفحه 17-27.
  13. Fan. "High-order weighted essentially nonoscillatory WENO-η schemes for hyperbolic conservation laws." J. Comput. Phys., Vol. 269, August 2014, pp. 355 – 385.
  14. Tang S, Feng Y, Li M. "Novel weighted essentially non-oscillatory schemes with adaptive weights." Applied Mathematics and Computation, Vol. 420, NO. 1, May 202, pp. 126 – 161.
  15. Shen Y, Li S, Liu S, Cui K, Zheng G. "A robust common-weights WENO scheme based on the flux vector splitting for Euler equations." Communications in Nonlinear Science and Numerical Simulation. Vol. 27, Jan 2023, pp. 107 – 122.
  16. Li R, Zhong W. "A general improvement in the WENO-Z-type schemes." Computers & Fluids, Vol. 198, NO. 6, Jan 2022, pp. 122 – 149.
  17. Takagi S, Fu L, Wakimura H, Xiao F. "A novel high-order low-dissipation TENO-THINC scheme for hyperbolic conservation laws." Journal of Computational Physics,Vol. 452, NO. 1, Mar 2022, pp. 452 – 467.
  18. Li R, Zhong W. "A robust and efficient component-wise WENO scheme for Euler equations." Applied Mathematics and Computation, Vol. 438, NO. 1, Feb 2023, pp. 215 – 233.
  19. Vevek US, Zang B, New TH. "A new mapped WENO method for hyperbolic problems." Aerospace, Vol. 19, NO. 10, Oct 2022, pp. 623 – 657.
  20. Tang S, Feng Y, Li M. "Novel weighted essentially non-oscillatory schemes with adaptive weights." Applied Mathematics and Computation, Vol. 420, NO. 1, May 2022, pp. 230 – 253.
  21. Zhang Y, Zhu J. "New mapped unequal-sized trigonometric WENO scheme for hyperbolic conservation laws." Computers & Fluids, Vol. 245, NO. 15, Sep 2002, pp. 105 – 138.
  22. Menter FR. "Two-equation eddy-viscosity turbulence models for engineering applications." AIAA journal, Vol. 32, NO. 8, August 1994, pp. 184 – 208.
  23. Liu S, Shen Y, Guo S, Yong H, Ni G. "Efficient implementation of high-order WENO schemes with sharing function for solving Euler equations." Computers & Fluids, Vol. 251, NO. 30, Jn 2023, pp. 165 – 189.
  24. Hirsch C. "Numerical computation of internal and external flows: The fundamentals of computational fluid dynamics." Elsevier; Vol. 165 NO. 9, Jul 2007, pp. 331 – 352.
  25. Sarkar S. "The stabilizing effect of compressibility in turbulent shear flow". Journal of fluid Mechanic, Vol. 28, NO. 2, Jan 1995, pp. 214 – 236.
  26. Fardipour K, Mansour K. "A modified seventh-order WENO scheme with new nonlinear weights for hyperbolic conservation laws." Computers & Mathematics with Applications, Vol. 78, NO. 12, Dec 2019, pp. 37 – 56.
  27. Saleh-Abadi M, Dehghan-Manshadi M, Bagheri-Esfeh H. "An improved seventh-order WENO scheme with a novel smoothness indicator for flows containing discontinuity-disturbance interaction." Optik, Vol. 271, NO. 1, Dec 2022, pp. 130 – 170.
  28. Kamiya T, Asahara M, Nonomura T. "Application of central differencing and low‐dissipation weights in a weighted compact nonlinear scheme." International Journal for Numerical Methods in Fluids, Vol. 84, NO. 3, May 2017, pp. 80 – 152
  29. Fardipour K, Mansour K. "Development of a Modified Seventh-Order WENO Scheme with New Nonlinear Weights." International Journal of Computational Fluid Dynamics, Vol. 32, NO. 4, Apr 2021, pp. 325 – 247.
  30. Fleischmann, N., Adami, S., & Adams, N. A. (2019). "Numerical symmetry-preserving techniques for low-dissipation shock-capturing schemes." Computers & Fluids, Vol. 189, NO. 6, Aug 2019, pp. 94 – 107.