سنتز نانو ذرات آبگریز شده مگنتیت برای ساخت و دستکاری تیله های مایع مغناطیسی و مدلسازی تغییر شکل تیله مایع تحت تاثیر نیروی گرانش زمین

نوع مقاله : مقاله برق

نویسندگان

1 دکتری، دانشکده مهندسی برق، دانشگاه صنعتی سهند تبریز

2 گروه مهندسی برق، دانشکده فنی مهندسی، دانشگاه بناب، بناب، ایران

3 استادیار، دانشکده مهندسی برق، دانشگاه آزاد اسلامی، واحد ارس

چکیده

تیله‌های مایع سیستم‌های نو ظهور ریزسیالات قطره‌ای گسسته هستند که جایگزین ساده‌ای برای ریزسیالات قطره‌ای مرسوم بوده که توسط ذرات نانو یا میکروی آبگریز احاطه شده‌اند. از مهترین کاربردهای تیله‌های مایع میتوان به استفاده از آنها در صنایع بیو شیمی، بیو پزشکی، تکنولوژی نانو و غیره اشاره کرد. در این تحقیق، مطالعه تیله‌های مایع در دو قسمت عملی و شبیه سازی صورت گرفته که در قسمت عملی، در ابتدا برای تولید تیله‌های مایع، نانو ذرات مگنتیت (Fe3O4)، سنتز و با پارافین آبگریز می‌گردند. در مرحله بعد با استفاده از یک میکروپیپت، یک قطره آب بر روی نانو ذرات قرار داده شده و با کج کردن سطح، بر روی نانو ذرات غلت داده شده که نهایتا" تیله مایع تشکیل می‌گردد. در آخر باز و بسته شدن غلاف پودری شکل با استفاده از میدان مغناطیسی ناشی از آهنربای ثابت مورد مطالعه قرار گرفت. در قسمت شبیه سازی، با مدلسازی تیله مایع با پوسته کشسان در اطراف قطره، تاثیر نیروی گرانشی زمین بر تیله مغناطیسی، مورد بررسی قرار گرفت و مشاهده گردید که نتایج حاصل از شبیه‌سازی مطابقت خوبی با عملی را داراست.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Synthesis and characterization of hydrophobised magnetite nanoparticles for production of liquid marbles and modeling of liquid marble deformation under the gravity effect

نویسندگان [English]

  • Elnaz Poorreza 1
  • Mahnaz Mehdipoor 1
  • reza hadjiaghaie vafaie 2
  • Noushin Dadashzadeh 3
1 . Ph.D, Faculty of Electrical engineering, Sahand University of technology, Tabriz, Iran
2 Department af electrical engineering, engineering faculty, University of bonab, Bonab, iran
3 Assistant professor, Faculty of Electrical Engineering, Islamic Azad University, Aras Branch, Jolfa, Iran
چکیده [English]

Liquid marbles are emerging discrete droplet microfluidic systems that are a simple alternative to conventional droplet microfluids encapsulated by hydrophobic nanoparticles or micro-particles. One of the most important applications of liquid marbles is their use in biochemistry, biomedicine, nanotechnology and so on. In this research, liquid marbles are studied in two parts of practical and simulation. In the practical part, for the production of liquid marbles, magnetite nanoparticles are first synthesized and hydrophobised with paraffin wax. In the next step, using a micropipette, a droplet of water is placed on the nanoparticles and by tilting the surface, it is rolled on the nanoparticles, which finally forms a "liquid marble". Finally, the opening and closing of the powdery shell studied using a magnetic field induced by a fixed magnet. In the simulation section, by modelling the marble with an elastic shell around the droplet, the effect of the gravitational force on it, was examined and it was observed that the simulation results show well agreement with the practical part.

کلیدواژه‌ها [English]

  • Surface tension
  • liquid marble
  • Magnetic field
  • Finite Element Method
  • Modelling
  • Nanoparticle synthesis
[1] لشکربلوکی، مصطفی. "پیش بینی کشش سطحی مایعات یونی بر پایه ایمیدازولیوم با بکارگیری شبکه عصبی مصنوعی" ، نشریه مدل سازی در مهندسی 17، 58 (1398): 1-13.
[2] طغریی سمیرمی، داود، و شیرین میرفروغی. "بررسی عددی انتقال حرارت آمیخته نانو سیال با خواص متغیر داخل حفره مستطیلی کم‌عمق با درپوش متحرک" ، نشریه مدل سازی در مهندسی 16 ، 55 (1397): 337-350.
[3] ضیایی راد، مسعود، و پیمان الیاسی. "بررسی عددی جریان نوسانی نانوسیال در کانال مستطیلی شکل در حالت غیردائم" ، نشریه مدل سازی در مهندسی 14، 44 (1395): 21-34.
[4]  حامدی استخرسر، محمد هادی، و روح الله ارفعی." بررسی عددی پارامترهای مؤثر بر عملکرد مدل برهم کنش ادی و قطره برای کاربرد در قطره‌گیر زیگزاگی ساده باصفحات موج‌دار"، نشریه مدل سازی در مهندسی 10، 31 (1391): 69-84.
[5] Zhao, Yan, Zhiguang Xu, Marzieh Parhizkar, Jian Fang, Xungai Wang, and Tong Lin, "Magnetic liquid marbles, their manipulation and application in optical probing", Microfluidics and nanofluidics 13, no. 4, ( 2012):  555-564.
[6] Fair, Richard B., "Digital microfluidics: is a true lab-on-a-chip possible? ", Microfluidics and Nanofluidics 3, no.3, (2007):  245-281.
[7] Aussillous, Pascale, and David Quéré, "Liquid marbles", Nature 411, no. 6840, (2001):  924.
[8] Aussillous, Pascale, and David Quéré, "Properties of liquid marbles", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 462, no. 2067, (2006):  973-999.
[9] Bormashenko, Edward, Roman Pogreb, Tamir Stein, Gene Whyman, Marcelo Schiffer, and Doron Aurbach.  "Electrically deformable liquid marbles", Journal of Adhesion Science and Technology 25, no.12, (2011):  1371-1377.
[10] Ooi, Chin Hong, Anh Van Nguyen, Geoffrey M Evans, Oleg Gendelman, Edward Bormashenko, and Nam-Trung Nguyen."A floating self-propelling liquid marble containing aqueous ethanol solutions", Rsc Advances 5, no.122, (2015): 101006-101012.
[11]  Bormashenko, Edward, Yelena Bormashenko, Roman Pogreb, and Oleg Gendelman. "Janus droplets: liquid marbles coated with dielectric/semiconductor particles", Langmuir 27, no.1, (2010):  7-10.
[12] Celestini, F, and Ed Bormashenko. "Propulsion of liquid marbles: A tool to measure their effective surface tension and viscosity", Journal of colloid and interface science 532, (2018):  32-36.
[13] Bormashenko, Edward, Yelena Bormashenko, Roman Grynyov, Hadas Aharoni, Gene Whyman, and Bernard P Binks.  "Self-propulsion of liquid marbles: Leidenfrost-like levitation driven by Marangoni flow", The Journal of Physical Chemistry C 119, no. 18, (2015): 9910-9915.
[14] Ooi, Chin Hong, Raja Vadivelu, Jing Jin, Kamalalayam Rajan Sreejith, Pradip Singha, Nhat-Khuong Nguyen, and Nam-Trung Nguyen. "Liquid marble-based digital microfluidics–fundamentals and applications", Lab on a Chip 21, no. 7, ( 2021):  1199-1216.
[15] Polwaththe-Gallage, Hasitha-Nayanajith, Emilie Sauret, Nam-Trung Nguyen, Suvash C Saha, and YuanTong Gu. "A novel numerical model to predict the morphological behavior of magnetic liquid marbles using coarse grained molecular dynamics concepts, Physics of Fluids 30, no.1, (2018):  017105.
[16] Shang, Qianqian, Lihong Hu, Yun Hu, Chengguo Liu, and Yonghong Zhou."Fabrication of superhydrophobic fluorinated silica nanoparticles for multifunctional liquid marbles", Applied Physics A 124, no. 1, (2018):  25.
[17] Kawashima, Hisato, Ryo Okatani, Hiroyuki Mayama, Yoshinobu Nakamura, and Syuji Fujii. "Synthesis of hydrophobic polyanilines as a light-responsive liquid marble stabilizer", Polymer 148,  (2018):  217-227.
[18]  Zhao, Zhijian, Xiaoxue Yao, Wen Zhao, Bo Shi, Sreepathy Sridhar, Yuan Pu, Stevin Pramana, Dan Wang, and Steven Wang. "Highly transparent liquid marble in liquid (HT-LMIL) as 3D miniaturized reactor for real-time bio-/chemical assays", Chemical Engineering Journal 443, (2022):  136417.
[19] Yao, Guansheng, Jinliang Xu, Yijun Feng, Lin Wang, and Guohua Liu." Solar-driven interfacial evaporation of a hanging liquid marble", Solar Energy Materials and Solar Cells 234, (2022): pp. 111430.
[20] Arbatan, Tina, Lizi Li, Junfei Tian, and Wei Shen. "Liquid marbles as micro‐bioreactors for rapid blood typing", Advanced healthcare materials 1, no.1, (2012):  80-83.
[21] Arbatan, Tina, Lizi Li, Junfei Tian, and Wei Shen. Microreactors: "Liquid Marbles as Micro‐bioreactors for Rapid Blood Typing" (Adv. Healthcare Mater. 1/2012), Advanced healthcare materials 1, no. 1, (2012): 78-79.
[22] Sarvi, Fatemeh, Kanika Jain, Tina Arbatan, Paul J Verma, Kerry Hourigan, Mark C Thompson, Wei Shen, and Peggy PY Chan."Cardiogenesis of embryonic stem cells with liquid marble micro‐bioreactor", Advanced healthcare materials 4, no.1, (2015): 77-86.
[23]  Bormashenko, Edward, Roman Pogreb, Revital Balter, Hadas Aharoni, Yelena Bormashenko, Roman Grynyov, Leonid Mashkevych, Doron Aurbach, and Oleg Gendelman. "Elastic properties of liquid marbles", Colloid and Polymer Science 293, no. 8, (2015): 2157- 2164
 [24] Bormashenko, Edward, Roman Pogreb, Albina Musin, Revital Balter, Gene Whyman, and Doron Aurbach. "Interfacial and conductive properties of liquid marbles coated with carbon black", Powder Technology 203, no. 3, (2010): 529-533.
[25]  McHale, Glen, DL Herbertson, SJ Elliott, NJ Shirtcliffe, and MI Newton. Electrowetting of nonwetting liquids and liquid marbles, Langmuir 23, no. 2, (2007):  918-924.
[26] Liu, Zhou, Xiangyu Fu, Bernard P Binks, and Ho Cheung Shum. "Coalescence of electrically charged liquid marbles", Soft Matter 13, no. 1, (2017): 119-124.
[27]  Zhao, Yan, Zhiguang Xu, Haitao Niu, Xungai Wang, and Tong Lin.  "Magnetic liquid marbles: Toward “lab in a droplet” ", Advanced Functional Materials 25, no. 3, (2015):  437-444.
 [28] Bormashenko, Edward, Revital Balter, and Doron Aurbach. "Micropump based on liquid marbles", Applied Physics Letters 97, no. 9, (2010):  091908.
[29] J. Jin, C.H. Ooi, K.R. Sreejith, J. Zhang, A.V. Nguyen, G.M. Evans, D.V. Dao, N.-T. Nguyen, "Accurate dielectrophoretic positioning of a floating liquid marble with a two-electrode configuration", Microfluidics and Nanofluidics 23, no. 7, (2019):  85.
[30]  Jin, Jing, Kamalalayam Rajan Sreejith, Chin Hong Ooi, Dzung Viet Dao, and Nam-Trung Nguyen.  "Critical trapping conditions for floating liquid marbles", Physical Review Applied 13, no. 1, (2020):  014002.
[31] Jin, Jing, Chin Hong Ooi, Kamalalayam Rajan Sreejith, Jun Zhang, Anh V Nguyen, Geoffrey M Evans, Dzung Viet Dao, and Nam-Trung Nguyen. "Dielectrophoretic trapping of a floating liquid marble", Physical Review Applied 11, no. 4, (2019):  044059.
[32] Poorreza, Elnaz, Reza Hadjiaghaie Vafaie, Mahnaz Mehdipoor, Adel Pourmand, and Habib Badri Ghavifekr. "Microseparator based-on 4-phase travelling wave dielectrophoresis for lab-on-a-chip applications",  Indian journal of pure and applied physics 51, no. 7, (2013):  506-515.
[33] Nam-Trung Nguyen. "Deformation of ferrofluid marbles in the presence of a permanent magnet", Langmuir 29, no. 45, (2013):  13982-13989.
 [34] Ghanbari, Mina, and Ghader Rezazadeh."A liquid-state high sensitive accelerometer based on a micro-scale liquid marble", Microsystem Technologies 26, no. 2, (2020):  617-623.
[35] Ooi, Chin Hong, and Nam-Trung Nguyen.  "Manipulation of liquid marbles", Microfluidics and Nanofluidics 19, no. 3, (2015):  483-495.
[36]  Yang, Zhaochu, Einar Halvorsen, and Tao Dong. "Power generation from conductive droplet sliding on electret film", Applied Physics Letters 100, no. 21, (2012):  213905.
[37] Zeng, H, and Y Zhao. "Dynamic behavior of a liquid marble based accelerometer", Applied Physics Letters 96, no. 11,  (2010):  114104.
[38] Mahadevan, L, and Yves Pomeau. "Rolling droplets", Phyics of  Fluids 11, no. 9, (1999):  2449–2453.
[39] Feng, Yijun, Guansheng Yao, Jinliang Xu, Lin Wang, and Guohua Liu.  "Effect of surface roughness on the solar evaporation of liquid marbles," Journal of Colloid and Interface Science 629, (2023):  644-653,
[40] Lekshmi, Bindhu Sunilkumar, and Subramanyan Namboodiri Varanakkottu. Janus liquid marbles: "Fabrication techniques, recent developments, and applications", Droplet, (2023):  e44.