VNR_CCP : یک راهکار جدید برای کنترل ازدحام با استفاده از تکنیک مجازی‌سازی و مهاجرت سوئیچ در شبکه‌های نرم‌افزارمحور

نوع مقاله : مقاله کامپیوتر

نویسندگان

1 گروه کامپیوتر، دانشکده فنی مهندسی، دانشگاه آزاد اسلامی، واحد میبد، میبد، ایران

2 گروه کامپیوتر، دانشکده فنی مهندسی، دانشگاه آزاد اسلامی، واحد تفت، تفت، ایران

چکیده

با جداسازی لایه داده از لایه کنترل در شبکه نرم‌افزار محور و امکان مدیریت متمرکز و قابل برنامه ریزی، می توان بسیاری از محدودیت‌ها و مشکلات رایج در شبکه‌های سنتی را مرتفع ساخته و یا بهبود بخشید. یکی از مشکلات موجود در این شبکه ها، مسئله ازدحام و کنترل آن است. در شبکه‌های نرم‌افزارمحور، استفاده از اطلاعات تحت نظارت دامنه کنترل‌کننده‌ها و جمع‌آوری آمار شبکه می تواند کمک بزرگی در کنترل یا پیشگیری از ازدحام نمایند. یک گره سوئیچ شبکه‌های نرم‌افزارمحور هنگامی‌که تحت درخواست‌های زیادی قرار می‌گیرد، شبکه را دچار ازدحام کرده و برای حل این مشکل کنترل‌کننده می‌تواند با در نظر گرفتن منابع آزاد موجود در سوئیچ‌ها و لینک‌ها، از مجازی‌سازی شبکه و مهاجرت سوئیچ‌ها به این فضا استفاده کند. در این مقاله یک رویکرد شبکه مبتنی بر نرم‌افزار برای کنترل ازدحام و مدیریت بهینه منابع بنام VNR_CCP ارائه‌شده است. در این رویکرد، با محاسبه سوددهی گره‌ها و لینک‌ها برای جستجوی ازدحام و درخواست شبکه مجازی برای کاهش بار موجود و مدیریت منابع، سعی در کنترل ازدحام شده است. نتایج شبیه‌سازی که با استفاده از شبیه‌ساز NS2 به دست آمده نشان می‌دهد که روش پیشنهادی در مقایسه با روش مشابه کارآیی بهتری دارد. به طوری‌که میزان گذردهی در حدود 3/4 درصد افزایش، تأخیر در حدود 3/5 درصد کاهش و میانگین هزینه نیز 26 درصد کاهش نسبت به روش مشابه داشته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

VNR_CCP: A new approach to congestion control using virtualization technique and switch migration in SDN

نویسندگان [English]

  • Mohammad Reza Jenabzadeh 1
  • Vahid Ayatollahitafti 2
  • Mohammad reza Mollakhalili 1
  • Mohammad Reza Mollahoseini Ardakani 1
1 Department of Computer Engineering, Maybod Branch, Islamic Azad University, Maybod, Iran
2 Department of computer science, Islamic Azad University, Taft branch, Taft, Yazd, Iran
چکیده [English]

By separating the data layer from the control layer in the software defined network and the possibility of centralized and programmable management, many limitations and common problems in traditional networks can be solved or improved. One of the existing problems in these networks is the issue of congestion and its control. In software defined networks, the use of information under the supervision of domain controllers and the collection of network statistics can be useful in controlling or preventing congestion. When an SDN switch node is subjected to many requests, the network becomes congested, and to solve this problem, the controller can use network virtualization and switch migration, taking into account the free resources available in the switches and links. In this paper, a software-based network approach for congestion control and optimal resource management called VNR_CCP is presented. In this approach, an attempt has been made to control congestion by calculating the nodes and links profit to search for congestion and request the virtual network to reduce the existing load and manage resources. The result of the simulation using the NS2 simulator shows that the proposed approach has better performance compared to the similar method. It was concluded that the throughput has increased by 4.3%, the delay has decreased by 5.3%, and the average cost has decreased by 26% compared to the similar method.

کلیدواژه‌ها [English]

  • SDN
  • Congestion Control
  • Load Balancing
  • VNR
  • OpenFlow
[1] Parsaei, Mohammad Reza, Seyed Habib Khalilian, and Reza Javidan. "A comparative study on fault tolerance methods in IP networks versus software defined networks." International Academic Journal of Science and Engineering 3, no. 4 (2016): 146-154.
[2] Rowshanrad, Shiva, Vajihe Abdi, and Manijeh Keshtgari. "Performance evaluation of SDN controllers: Floodlight and OpenDaylight." IIUM Engineering Journal 17, no. 2 (2016): 47-57.
[3] Akyildiz, Ian F., Ahyoung Lee, Pu Wang, Min Luo, and Wu Chou. "A roadmap for traffic engineering in SDN-OpenFlow networks." Computer Networks 71 (2014): 1-30.
[4] Guo, Zehua, Weikun Chen, Ya-Feng Liu, Yang Xu, and Zhi-Li Zhang. "Joint switch upgrade and controller deployment in hybrid software-defined networks." IEEE Journal on Selected Areas in Communications 37, no. 5 (2019): 1012-1028.
[5] Hodaei, Amin, and Shahram Babaie. "A survey on traffic management in software-defined networks: challenges, effective approaches, and potential measures." Wireless Personal Communications 118, no. 2 (2021): 1507-1534.
[6] Chu, Cing-Yu, Kang Xi, Min Luo, and H. Jonathan Chao. "Congestion-aware single link failure recovery in hybrid SDN networks." In 2015 IEEE Conference on Computer Communications (INFOCOM), pp. 1086-1094. IEEE, 2015.
[7] Kanagevlu, Renuga, and Khin Mi Mi Aung. "SDN controlled local re-routing to reduce congestion in cloud data center." In 2015 International Conference on Cloud Computing Research and Innovation (ICCCRI), pp. 80-88. IEEE, 2015.
[8] Lu, Yifei, and Shuhong Zhu. "SDN-based TCP congestion control in data center networks." In 2015 IEEE 34th international performance computing and communications conference (IPCCC), pp. 1-7. IEEE, 2015.
[9] Celenlioglu, Mahmud Rasih, Mohammed Alsadi, and Haci Ali Mantar. "Design, implementation and evaluation of SDN-based resource management model." In 2015 7th International Conference on New Technologies, Mobility and Security (NTMS), pp. 1-5. IEEE, 2015.
[10] Zhang, San-mei, and Arun Kumar Sangaiah. "Reliable design for virtual network requests with location constraints in edge-of-things computing." EURASIP Journal on Wireless Communications and Networking 2018 (2018): 1-10.
[11] Song, Seungbeom, Jaiyong Lee, Kyuho Son, Hangyong Jung, and Jihoon Lee. "A congestion avoidance algorithm in SDN environment." In 2016 International Conference on Information Networking (ICOIN), pp. 420-423. IEEE, 2016.
[12] Zhu, Tingwei, Dan Feng, Fang Wang, Yu Hua, Qingyu Shi, Yanwen Xie, and Yong Wan. "A congestion-aware and robust multicast protocol in SDN-based data center networks." Journal of Network and Computer Applications 95 (2017): 105-117.
[13] Hu, Yao, Ting Peng, and Lianming Zhang. "Software-defined congestion control algorithm for IP networks." Scientific Programming 2017 (2017).
[14] Rahman, M. Z. A., N. Yaakob, A. Amir, R. B. Ahmad, S. K. Yoon, and A. H. Abd Halim. "Performance analysis of congestion control mechanism in software defined network (sdn)." In MATEC Web of Conferences, vol. 140, p. 01033. EDP Sciences, 2017.
[15] Wang, Shie-Yuan, Li-Min Chen, Shih-Kai Lin, and Liang-Chi Tseng. "Using SDN congestion controls to ensure zero packet loss in storage area networks." In 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), pp. 490-496. IEEE, 2017.
[16] Shen, Dawei, Wei Yan, Yuhuai Peng, Yanhua Fu, and Qingxu Deng. "Congestion control and traffic scheduling for collaborative crowdsourcing in SDN enabled mobile wireless networks." Wireless Communications and Mobile Computing 2018 (2018): 1-11.
[17] Tajiki, Mohammad Mahdi, Behzad Akbari, Mohammad Shojafar, Seyed Hesomodding Ghasemi, Mahdi Latifi Barazandeh, Nader Mokari, Luca Chiaraviglio, and Michael Zink. "CECT: computationally efficient congestion-avoidance and traffic engineering in software-defined cloud data centers." Cluster Computing 21 (2018): 1881-1897.
[18] Zhao, Jihong, Mengfei Tong, Hua Qu, and Jianlong Zhao. "An intelligent congestion control method in software defined networks." In 2019 IEEE 11th International Conference on Communication Software and Networks (ICCSN), pp. 51-56. IEEE, 2019.
[19] Lei, Kai, Yuzhi Liang, and Wei Li. "Congestion control in SDN-based networks via multi-task deep reinforcement learning." IEEE Network 34, no. 4 (2020): 28-34.
[20] Chen, Yu-Jia, Li-Chun Wang, Meng-Chieh Chen, Pin-Man Huang, and Pei-Jung Chung. "SDN-enabled traffic-aware load balancing for M2M networks." IEEE Internet of Things Journal 5, no. 3 (2018): 1797-1806.
[21] Chiang, Mei-Ling, Hui-Sheng Cheng, Hsien-Yi Liu, and Ching-Yi Chiang. "SDN-based server clusters with dynamic load balancing and performance improvement." Cluster Computing 24 (2021): 537-558.
[22] Zhang, Junjie, Minghao Ye, Zehua Guo, Chen-Yu Yen, and H. Jonathan Chao. "CFR-RL: Traffic engineering with reinforcement learning in SDN." IEEE Journal on Selected Areas in Communications 38, no. 10 (2020): 2249-2259.
[23] Soud, Najwan Sattar, and Nadia Adnan Shiltagh Al-Jamali. "Intelligent Congestion Control of 5G Traffic in SDN using Dual-Spike Neural Network." Journal of Engineering 29, no. 1 (2023): 110-127.
[24] Bhardwaj, Shanu, and Ashish Girdhar. "Network Traffic Analysis in Software-Defined Networking Using RYU Controller." Wireless Personal Communications 132, no. 3 (2023): 1797-1818.
[25] da Silva de Oliveira, Filipe, Maurício Aronne Pillon, Charles Christian Miers, and Guilherme Piêgas Koslovski. "Identifying Network Congestion on SDN-Based Data Centers with Supervised Classification." In International Conference on Advanced Information Networking and Applications, pp. 222-234. Cham: Springer International Publishing, 2023.
[26] Queiroz, Wander, Miriam AM Capretz, and Mario Dantas. "An approach for SDN traffic monitoring based on big data techniques." Journal of Network and Computer Applications 131 (2019): 28-39.
[27] Javadpour, Amir. "Improving resources management in network virtualization by utilizing a software-based network." Wireless Personal Communications 106 (2019): 505-519.