بررسی خواص مکانیکی تک‌لایه بیفنیلن در دماهای مختلف

نوع مقاله : مقاله مکانیک

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی مکانیک- طراحی کاربردی، دانشکده فنی، دانشگاه محقق اردبیلی، ایران

2 استادیار گروه مهندسی مکانیک، دانشکده فنی، دانشگاه محقق اردبیلی، ایران

چکیده

در این مطالعه رفتار مکانیکی جدیدترین آلوتروپ کربن به نام شبکه بیفنیلن (BPN) با استفاده از شبیه‌سازی‌های دینامیک مولکولی مورد بررسی قرار گرفته است. ساختار BPN از حلقه­های چهار، شش و هشت­ضلعی از اتم­های کربن هیبریدشده با sp2 تشکیل شده است. پتانسیل بین اتمی در این مطالعه از نوع ایربو در نظرگرفته شده و رفتار کششی این ساختار در دماهای مختلف مدل­سازی شده است. پس از شبیه­سازی، مدول یانگ و تنش تسلیم­بیفنیلن در دماهای مختلف در جهت آرمچِیر و در جهت زیگزاگ بدست آمده است. مدول یانگ در جهت زیگراگ در تمامی دماها حدود 14 تا 29 درصد بیشتر از جهت دیگر است که نشان­دهنده رفتار ارتوتروپیک این ساختار می­باشد. علاوه بر این با افزایش دما کرنش شکست و مدول یانگ به دلیل افزایش فاصله بین اتم­ها و کاهش انرژی کاهش پیدا کرده است. همچنین خواص مکانیکی رفتار شکست ترد تک­لایه BPN را نشان می­دهد. نتایج این مطالعه نشان می­دهد که BPN برخی از ویژگی­های استثنایی گرافین را به اشتراک می­گذارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Mechanical Properties Analysis of a Monolayer Biphenylene at Different Temperatures

نویسندگان [English]

  • Mohammad Amin Hemmatpour Khotbesara 1
  • Masoud Ajri 2
  • Majid Samadiyan 1
1 MSc. Student, Department of Mechanical Engineering, University of Mohaghegh Ardabili, Iran
2 Assistant Professor, Department of Mechanical Engineering, University of Mohaghegh Ardabili, Iran.
چکیده [English]

In this study, the mechanical behavior of the newest allotrope of carbon called biphenylene network (BPN) has been investigated using molecular dynamics simulations. The structure of BPN consists of four, six, and eight-membered carbon rings hybridized with sp2. In this study, the interatomic potential is considered to be AIRBO, and the tensile behavior of this structure has been modeled at different temperatures. After simulation, the Young's modulus and yield stress of biphenylene at different temperatures have been obtained in the armchair direction and zig-zag direction. The Young's modulus in the zig-zag direction at all temperatures is about 14 to 29% higher than the other direction, which indicates the orthotropic behavior of this structure. In addition, with the increase in temperature, the failure strain and Young's modulus have decreased due to the increase in the distance between the atoms and the decrease in energy. It has also been shown that the failure of BPN is brittle. The results of this study show that BPN shares some of the exceptional properties of graphene.
.

کلیدواژه‌ها [English]

  • Carbon allotrope
  • Biphenylene
  • Molecular dynamics
  • Young's modulus
  • Ultimate stress
[1] H.O. Pierson. Handbook of Carbon, Graphite, Diamonds and Fullerenes: Processing, Properties and Applications. William Andrew, 2012.
[2] K. Kawasumi, Q. Zhang, Y. Segawa, L.T. Scott, and K. Itami. "A Grossly Warped Nanographene and the Consequences of Multiple Odd-Membered-Ring Defects." Nature Chemistry 5, no. 9 (2013): 739-44.
[3] P. Karthik, A. Himaja, and S.P. Singh. "Carbon-Allotropes: Synthesis Methods, Applications and Future Perspectives." Carbon Letters 15, no. 4 (2014): 219-37.
[4] C. McCallion, J. Burthem, K. Rees-Unwin, A. Golovanov, and A. Pluen. "Graphene in Therapeutics Delivery: Problems, Solutions and Future Opportunities." European Journal of Pharmaceutics and Biopharmaceutics 104 (2016): 235-50.
[5] H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, and R.E. Smalley. "C60: Buckminsterfullerene." Nature 318, no. 6042 (1985): 162-63.
[6] S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, and P. Jena. "Penta-Graphene: A New Carbon Allotrope." Proceedings of the National Academy of Sciences 112, no. 8 (2015): 2372-77.
[7] N. Deprez, and D.S. McLachlan. "The Analysis of the Electrical Conductivity of Graphite Conductivity of Graphite Powders During Compaction." Journal of Physics D: Applied Physics 21, no. 1 (1988): 101.
[8] K.D. Sattler. Carbon Nanomaterials Sourcebook. Vol. 1: CRC Press Boca Raton, FL, USA, 2016.
[9] C. Lee, X. Wei, J.W. Kysar, and J. Hone. "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene." Science 321, no. 5887 (2008): 385-88.
[10] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau. "Superior Thermal Conductivity of Single-Layer Graphene." Nano Letters 8, no. 3 (2008): 902-07.
[11] S. Chen, A.L. Moore, W. Cai, J.W. Suk, J. An, C. Mishra, C. Amos, C.W. Magnuson, J. Kang, L. Shi, and R.S. Ruoff. "Raman Measurements of Thermal Transport in Suspended Monolayer Graphene of Variable Sizes in Vacuum and Gaseous Environments." ACS Nano 5, no. 1 (2011): 321-28.
[12] S.C. Pradhan, and T. Murmu. "Small Scale Effect on the Buckling of Single-Layered Graphene Sheets under Biaxial Compression Via Nonlocal Continuum Mechanics." Computational Materials Science 47, no. 1 (2009): 268-74.
[13] W. Humphrey, A. Dalke, and K. Schulten. "Vmd: Visual Molecular Dynamics." Journal Of Molecular Graphics 14, no. 1 (1996): 33-38.
[14] Q. Fan, L. Yan, M.W. Tripp, O. Krejčí, S. Dimosthenous, S.R. Kachel, M. Chen, A.S. Foster, U. Koert, P. Liljeroth, and J.M. Gottfried. "Biphenylene Network: A Nonbenzenoid Carbon Allotrope." Science 372, no. 6544 (2021): 852-56.
[15] P. Ying,  T. Liang, Y. Du, J. Zhang, X. Zeng, and Z. Zhong. "Thermal Transport in Planar Sp2-Hybridized Carbon Allotropes: A Comparative Study of Biphenylene Network, Pentaheptite and Graphene." International Journal of Heat and Mass Transfer 183 (2022): 122060.
[16] M.M. Obeid, and Q. Sun. "Assembling Biphenylene into 3d Porous Metallic Carbon Allotrope for Promising Anode of Lithium-Ion Batteries." Carbon 188 (2022): 95-103.
[17] P.A. Denis, and F. Iribarne. "Hydrogen Storage in Doped Biphenylene Based Sheets." Computational and Theoretical Chemistry 1062 (2015): 30-35.
[18] S. Wang. "O,ptical Response and Excitonic Effects in Graphene Nanoribbons Derived from Biphenylene." Materials Letters 167 (2016): 258-61.
[19] M. Zarghami Dehaghani, F. Molaei, C. Spitas, and A.H. Mashhadzadeh. "Thermal Rectification in Nozzle-Like Graphene/Boron Nitride Nanoribbons: A Molecular Dynamics Simulation." Computational Materials Science 207 (2022): 111320.
[20] M. Zarghami Dehaghani, F. Molaei, F. Yousefi, S.M. Sajadi, A. Esmaeili, A. Mohaddespour, O. Farzadian, S. Habibzadeh, A.H. Mashhadzadeh, C. Spitas, and M.R. Saeb. "An Insight into Thermal Properties of Bc3-Graphene Hetero-Nanosheets: A Molecular Dynamics Study." Scientific Reports 11, no. 1 (2021): 23064.
[21] S. Fooladpanjeh, F. Yousefi, F. Molaei, M. Zarghami Dehaghani, S.M. Sajadi, O. Abida, S. Habibzadeh, A. H. Mashhadzadeh, and M.R. Saeb. "Thermal Conductivity of Random Polycrystalline Bc3 Nanosheets: A Step Towards Realistic Simulation of 2d Structures." Journal of Molecular Graphics and Modelling 107 (2021): 107977.
[22] M. Zarghami Dehaghani, B. Bagheri, F. Yousefi, A. Nasiriasayesh, A.H. Mashhadzadeh, P. Zarrintaj, N. Rabiee, M. Bagherzadeh, V. Fierro, A. Celzard, and M.R. Saeb. "Boron Nitride Nanotube as an Antimicrobial Peptide Carrier: A Theoretical Insight." International Journal of Nanomedicine 16 (2021): 1837.
[23] M.L. Pereira, W.F. Da Cunha, R.T. De Sousa, G.D. Amvame Nze, D.S. Galvão, and L.A. Ribeiro. "On the Mechanical Properties and Fracture Patterns of the Nonbenzenoid Carbon Allotrope (Biphenylene Network): A Reactive Molecular Dynamics Study." Nanoscale 14, no. 8 (2022): 3200-11.
[24] T. Han, Y. Liu, X. Lv, and F. Li. "Biphenylene Monolayer: A Novel Nonbenzenoid Carbon Allotrope with Potential Application as an Anode Material for High-Performance Sodium-Ion Batteries." Physical Chemistry Chemical Physics 24, no. 18 (2022): 10712-16.
[25] H. Shen, , R. Yang, K. Xie, Z. Yu, Y. Zheng, R. Zhang, L. Chen, B.R. Wu, W.S. Su, and S. Wang. "Electronic and Optical Properties of Hydrogen-Terminated Biphenylene Nanoribbons: A First-Principles Study." Physical Chemistry Chemical Physics 24, no. 1 (2022): 357-65.
[26] A. Bafekry, M. Faraji, M.M. Fadlallah, H.R. Jappor, S. Karbasizadeh, M. Ghergherehchi, and D. Gogova. "Biphenylene Monolayer as a Two-Dimensional Nonbenzenoid Carbon Allotrope: A First-Principles Study." Journal of Physics: Condensed Matter 34, no. 1 (2021): 015001.
[27] O. Rahaman, B. Mortazavi, A. Dianat, G. Cuniberti, and T. Rabczuk. "Metamorphosis in Carbon Network: From Penta-Graphene to Biphenylene under Uniaxial Tension." FlatChem 1 (2017): 65-73.
[28] Y. Luo, C. Ren, Y. Xu, J. Yu, S. Wang, and M. Sun. "A First Principles Investigation on the Structural, Mechanical, Electronic, and Catalytic Properties of Biphenylene." Scientific Reports 11, no. 1 (2021): 19008.
[29] B. Mortazavi, and A.V. Shapeev. "Anisotropic Mechanical Response, High Negative Thermal Expansion, and Outstanding Dynamical Stability of Biphenylene Monolayer Revealed by Machine-Learning Interatomic Potentials." FlatChem 32 (2022): 100347.
[30] A.H. Mashhadzadeh, M. Zarghami Dehaghani, F. Molaie, S. Fooladapanjeh, O. Farzadian, and C. Spitas. "A Theoretical Insight into the Mechanical Properties and Phonon Thermal Conductivity of Biphenylene Network Structure." Computational Materials Science 214 (2022): 111761.
[31] H.P. Veeravenkata, and A. Jain. "Density Functional Theory Driven Phononic Thermal Conductivity Prediction of Biphenylene: A Comparison with Graphene." Carbon 183 (2021): 893-98.
[32] Q. Li, J. Zhou, G. Liu, and X. Wan. "Extraordinary Negative Thermal Expansion of Monolayer Biphenylene." Carbon 187 (2022): 349-53.
[33] K. Ke, K. Meng, J. Rong, and X. Yu. "Biphenylene: A Two− Dimensional Graphene− Based Coating with Superior Anti− Corrosion Performance." Materials 15, no. 16 (2022): 5675.
[34] O. Farzadian, M. Zarghami Dehaghani, K.V. Kostas, A.H. Mashhadzadeh, and C. Spitas. "A Theoretical Insight into Phonon Heat Transport in Graphene/Biphenylene Superlattice Nanoribbons: A Molecular Dynamic Study." Nanotechnology 33, no. 35 (2022): 355705.
[35] G. Liu, T. Chen, X. Li, Z. Xu, and X. Xiao. "Electronic Transport in Biphenylene Network Monolayer: Proposals for 2d Multifunctional Carbon-Based Nanodevices." Applied Surface Science 599 (2022): 153993.
[36] M. Zarghami Dehaghani, O. Farzadian, K.V. Kostas, F. Molaei, C. Spitas, and A.H. Mashhadzadeh. "Theoretical Study of Heat Transfer across Biphenylene/H-Bn Superlattice Nanoribbons." Physica E: Low-dimensional Systems and Nanostructures 144 (2022): 115411.
[37] B.Q. Zhang, and Z.G. Shao. "Structure and Interaction between the Novel Graphene-Like Planar Biphenylene Network and DNA: Molecular Dynamics Simulations." Physica E: Low-dimensional Systems and Nanostructures 146 (2023): 115547.
[38] X.W. Chen, Z.Z. Lin, and X.M. Li. "Biphenylene Network as Sodium Ion Battery Anode Material." Physical Chemistry Chemical Physics  (2023).
[39] C.M. Long, M.A. Nascarella, and P.A. Valberg. "Carbon Black Vs. Black Carbon and Other Airborne Materials Containing Elemental Carbon: Physical and Chemical Distinctions." Environmental Pollution 181 (2013): 271-86.
[40] M. Tang, and S. Yip. "Atomistic Simulation of Thermomechanical Properties of Β-Sic." Physical Review B 52, no. 21 (1995): 15150.
[41] O. Rahaman, B. Mortazavi, A. Dianat, G. Cuniberti, and T. Rabczuk. "A Structural Insight into Mechanical Strength of Graphene-Like Carbon and Carbon Nitride Networks." Nanotechnology 28, no. 5 (2016): 055707.
[42] M.A. Hudspeth, B.W. Whitman, V. Barone, and J.E. Peralta. "Electronic Properties of the Biphenylene Sheet and Its One-Dimensional Derivatives." ACS Nano 4, no. 8 (2010): 4565-70.
[43] H. Terrones, M. Terrones, E. Hernández, N. Grobert, J.C. Charlier, and P.M. Ajayan. "New Metallic Allotropes of Planar and Tubular Carbon." Physical Review Letters 84, no. 8 (2000): 1716.