بررسی خواص مکانیکی تک لایه بیفنیلن در دماهای مختلف

نوع مقاله : مقاله مکانیک

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی مکانیک- طراحی کاربردی، دانشکده فنی، دانشگاه محقق اردبیلی، ایران

2 استادیار گروه مهندسی مکانیک، دانشکده فنی، دانشگاه محقق اردبیلی، ایران

چکیده

در این مطالعه رفتار مکانیکی جدیدترین آلوتروپ کربن به نام شبکه بیفنیلن (BPN) با استفاده از شبیه‌سازی‌های دینامیک مولکولی مورد بررسی قرار گرفته است. ساختار BPN از حلقه های چهار، شش و هشت ضلعی از اتم های کربن هیبریدشده با sp2 تشکیل شده است. پتانسیل بین اتمی در این مطالعه از نوع ایربو در نظرگرفته شده و رفتار کششی این ساختار در دماهای مختلف مدل سازی شده است. پس از شبیه سازی، مدول یانگ و تنش تسلیم بیفنیلن در دماهای مختلف در جهت آرمچِیر و در جهت زیگزاگ بدست آمده است. مدول یانگ در جهت زیگراگ در تمامی دماها حدود 14 تا 29 درصد بیشتر از جهت دیگر است که نشان دهنده رفتار ارتوتروپیک این ساختار می باشد. علاوه بر این با افزایش دما کرنش شکست و مدول یانگ به دلیل افزایش فاصله بین اتم‌ها و کاهش انرژی کاهش پیدا کرده است. همچنین خواص مکانیکی رفتار شکست ترد تک لایه BPN را نشان می دهد. نتایج این مطالعه نشان می دهد که BPN برخی از ویژگی‌های استثنایی گرافین را به اشتراک می گذارد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Mechanical properties analysis of a monolayer biphenylene at different temperatures

نویسندگان [English]

  • Mohammad Amin Hemmatpour Khotbesara 1
  • Masoud Ajri 2
  • Majid Samadiyan 1
1 MSc. Student, Department of Mechanical Engineering, University of Mohaghegh Ardabili, Iran
2 Assistant Professor, Department of Mechanical Engineering, University of Mohaghegh Ardabili, Iran.
چکیده [English]

In this study, the mechanical behavior of the newest allotrope of carbon called biphenylene network (BPN) has been investigated using molecular dynamics simulations. The structure of BPN consists of four, six, and eight-membered carbon rings hybridized with sp2. In this study, the interatomic potential is considered to be AIRBO, and the tensile behavior of this structure has been modeled at different temperatures. After simulation, the Young's modulus and yield stress of biphenylene at different temperatures have been obtained in the armchair direction and zig-zag direction. The Young's modulus in the zig-zag direction at all temperatures is about 14 to 29% higher than the other direction, which indicates the orthotropic behavior of this structure. In addition, with the increase in temperature, the failure strain and Young's modulus have decreased due to the increase in the distance between the atoms and the decrease in energy. It has also been shown that the failure of BPN is brittle. The results of this study show that BPN shares some of the exceptional properties of graphene.

کلیدواژه‌ها [English]

  • Carbon Allotrope
  • Biphenylene
  • Molecular Dynamics
  • Young's modulus
  • Ultimate Stress
[1] Pierson, Hugh O. Handbook of Carbon, Graphite, Diamonds and Fullerenes: Processing, Properties and Applications. William Andrew, 2012.
[2] Kawasumi, Katsuaki, Qianyan Zhang, Yasutomo Segawa, Lawrence T Scott, and Kenichiro Itami. "A Grossly Warped Nanographene and the Consequences of Multiple Odd-Membered-Ring Defects." Nature chemistry 5, no. 9 (2013): 739-44.
[3] Karthik, PS, AL Himaja, and Surya Prakash Singh. "Carbon-Allotropes: Synthesis Methods, Applications and Future Perspectives." Carbon letters 15, no. 4 (2014): 219-37.
[4] McCallion, Catriona, John Burthem, Karen Rees-Unwin, Alexander Golovanov, and Alain Pluen. "Graphene in Therapeutics Delivery: Problems, Solutions and Future Opportunities." European Journal of Pharmaceutics and Biopharmaceutics 104 (2016): 235-50.
[5] Kroto, Harold W, James R Heath, Sean C O’Brien, Robert F Curl, and Richard E Smalley. "C60: Buckminsterfullerene." nature 318, no. 6042 (1985): 162-63.
[6] Zhang, Shunhong, Jian Zhou, Qian Wang, Xiaoshuang Chen, Yoshiyuki Kawazoe, and Puru Jena. "Penta-Graphene: A New Carbon Allotrope." Proceedings of the National Academy of Sciences 112, no. 8 (2015): 2372-77.
[7] Deprez, N, and DS McLachlan. "The Analysis of the Electrical Conductivity of Graphite Conductivity of Graphite Powders During Compaction." Journal of Physics D: Applied Physics 21, no. 1 (1988): 101.
[8] Sattler, Klaus D. Carbon Nanomaterials Sourcebook. Vol. 1: CRC Press Boca Raton, FL, USA, 2016.
[9] Lee, Changgu, Xiaoding Wei, Jeffrey W Kysar, and James Hone. "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene." science 321, no. 5887 (2008): 385-88.
[10] Balandin, Alexander A, Suchismita Ghosh, Wenzhong Bao, Irene Calizo, Desalegne Teweldebrhan, Feng Miao, and Chun Ning Lau. "Superior Thermal Conductivity of Single-Layer Graphene." Nano letters 8, no. 3 (2008): 902-07.
[11] Chen, Shanshan, Arden L Moore, Weiwei Cai, Ji Won Suk, Jinho An, Columbia Mishra, Charles Amos, et al. "Raman Measurements of Thermal Transport in Suspended Monolayer Graphene of Variable Sizes in Vacuum and Gaseous Environments." ACS nano 5, no. 1 (2011): 321-28.
[12] Pradhan, SC, and T Murmu. "Small Scale Effect on the Buckling of Single-Layered Graphene Sheets under Biaxial Compression Via Nonlocal Continuum Mechanics." Computational materials science 47, no. 1 (2009): 268-74.
[13] Humphrey, William, Andrew Dalke, and Klaus Schulten. "Vmd: Visual Molecular Dynamics." Journal of molecular graphics 14, no. 1 (1996): 33-38.
[14] Fan, Qitang, Linghao Yan, Matthias W Tripp, Ondřej Krejčí, Stavrina Dimosthenous, Stefan R Kachel, Mengyi Chen, et al. "Biphenylene Network: A Nonbenzenoid Carbon Allotrope." Science 372, no. 6544 (2021): 852-56.
[15] Ying, Penghua, Ting Liang, Yao Du, Jin Zhang, Xiaoliang Zeng, and Zheng Zhong. "Thermal Transport in Planar Sp2-Hybridized Carbon Allotropes: A Comparative Study of Biphenylene Network, Pentaheptite and Graphene." International Journal of Heat and Mass Transfer 183 (2022): 122060.
[16] Obeid, Mohammed M, and Qiang Sun. "Assembling Biphenylene into 3d Porous Metallic Carbon Allotrope for Promising Anode of Lithium-Ion Batteries." Carbon 188 (2022): 95-103.
[17] Denis, Pablo A, and Federico Iribarne. "Hydrogen Storage in Doped Biphenylene Based Sheets." Computational and theoretical chemistry 1062 (2015): 30-35.
[18] Wang, Shudong. "Optical Response and Excitonic Effects in Graphene Nanoribbons Derived from Biphenylene." Materials Letters 167 (2016): 258-61.
[19] Dehaghani, Maryam Zarghami, Fatemeh Molaei, Christos Spitas, and Amin Hamed Mashhadzadeh. "Thermal Rectification in Nozzle-Like Graphene/Boron Nitride Nanoribbons: A Molecular Dynamics Simulation." Computational Materials Science 207 (2022): 111320.
[20] Dehaghani, Maryam Zarghami, Fatemeh Molaei, Farrokh Yousefi, S Mohammad Sajadi, Amin Esmaeili, Ahmad Mohaddespour, Omid Farzadian, et al. "An Insight into Thermal Properties of Bc3-Graphene Hetero-Nanosheets: A Molecular Dynamics Study." Scientific reports 11, no. 1 (2021): 23064.
[21] Fooladpanjeh, Sasan, Farrokh Yousefi, Fatemeh Molaei, Maryam Zarghami Dehaghani, S Mohammad Sajadi, Otman Abida, Sajjad Habibzadeh, Amin Hamed Mashhadzadeh, and Mohammad Reza Saeb. "Thermal Conductivity of Random Polycrystalline Bc3 Nanosheets: A Step Towards Realistic Simulation of 2d Structures." Journal of Molecular Graphics and Modelling 107 (2021): 107977.
[22] Dehaghani, Maryam Zarghami, Babak Bagheri, Farrokh Yousefi, Abbasali Nasiriasayesh, Amin Hamed Mashhadzadeh, Payam Zarrintaj, Navid Rabiee, et al. "Boron Nitride Nanotube as an Antimicrobial Peptide Carrier: A Theoretical Insight." International Journal of Nanomedicine 16 (2021): 1837.
[23] Pereira, ML, WF da Cunha, RT de Sousa, GD Amvame Nze, DS Galvão, and LA Ribeiro. "On the Mechanical Properties and Fracture Patterns of the Nonbenzenoid Carbon Allotrope (Biphenylene Network): A Reactive Molecular Dynamics Study." Nanoscale 14, no. 8 (2022): 3200-11.
[24] Han, Ting, Yu Liu, Xiaodong Lv, and Fengyu Li. "Biphenylene Monolayer: A Novel Nonbenzenoid Carbon Allotrope with Potential Application as an Anode Material for High-Performance Sodium-Ion Batteries." Physical Chemistry Chemical Physics 24, no. 18 (2022): 10712-16.
[25] Shen, Hong, Riyi Yang, Kun Xie, Zhiyuan Yu, Yuxiang Zheng, Rongjun Zhang, Liangyao Chen, et al. "Electronic and Optical Properties of Hydrogen-Terminated Biphenylene Nanoribbons: A First-Principles Study." Physical Chemistry Chemical Physics 24, no. 1 (2022): 357-65.
[26] Bafekry, A, M Faraji, MM Fadlallah, HR Jappor, S Karbasizadeh, M Ghergherehchi, and D Gogova. "Biphenylene Monolayer as a Two-Dimensional Nonbenzenoid Carbon Allotrope: A First-Principles Study." Journal of Physics: Condensed Matter 34, no. 1 (2021): 015001.
[27] Rahaman, Obaidur, Bohayra Mortazavi, Arezoo Dianat, Gianaurelio Cuniberti, and Timon Rabczuk. "Metamorphosis in Carbon Network: From Penta-Graphene to Biphenylene under Uniaxial Tension." FlatChem 1 (2017): 65-73.
[28] Luo, Yi, Chongdan Ren, Yujing Xu, Jin Yu, Sake Wang, and Minglei Sun. "A First Principles Investigation on the Structural, Mechanical, Electronic, and Catalytic Properties of Biphenylene." Scientific reports 11, no. 1 (2021): 19008.
[29] Mortazavi, Bohayra, and Alexander V Shapeev. "Anisotropic Mechanical Response, High Negative Thermal Expansion, and Outstanding Dynamical Stability of Biphenylene Monolayer Revealed by Machine-Learning Interatomic Potentials." FlatChem 32 (2022): 100347.
[30] Mashhadzadeh, Amin Hamed, Maryam Zarghami Dehaghani, Fatemeh Molaie, Sasan Fooladapanjeh, Omid Farzadian, and Christos Spitas. "A Theoretical Insight into the Mechanical Properties and Phonon Thermal Conductivity of Biphenylene Network Structure." Computational Materials Science 214 (2022): 111761.
[31] Veeravenkata, Harish P, and Ankit Jain. "Density Functional Theory Driven Phononic Thermal Conductivity Prediction of Biphenylene: A Comparison with Graphene." Carbon 183 (2021): 893-98.
[32] Li, Qingfang, Jian Zhou, Gang Liu, and XG Wan. "Extraordinary Negative Thermal Expansion of Monolayer Biphenylene." Carbon 187 (2022): 349-53.
[33] Ke, Ke, Kun Meng, Ju Rong, and Xiaohua Yu. "Biphenylene: A Two− Dimensional Graphene− Based Coating with Superior Anti− Corrosion Performance." Materials 15, no. 16 (2022): 5675.
[34] Farzadian, Omid, Maryam Zarghami Dehaghani, Konstantinos V Kostas, Amin Hamed Mashhadzadeh, and Christos Spitas. "A Theoretical Insight into Phonon Heat Transport in Graphene/Biphenylene Superlattice Nanoribbons: A Molecular Dynamic Study." Nanotechnology 33, no. 35 (2022): 355705.
[35] Liu, Guogang, Tong Chen, Xiaohui Li, Zhonghui Xu, and Xianbo Xiao. "Electronic Transport in Biphenylene Network Monolayer: Proposals for 2d Multifunctional Carbon-Based Nanodevices." Applied Surface Science 599 (2022): 153993.
[36] Dehaghani, Maryam Zarghami, Omid Farzadian, Konstantinos V Kostas, Fatemeh Molaei, Christos Spitas, and Amin Hamed Mashhadzadeh. "Theoretical Study of Heat Transfer across Biphenylene/H-Bn Superlattice Nanoribbons." Physica E: Low-dimensional Systems and Nanostructures 144 (2022): 115411.
[37] Zhang, Bing-Quan, and Zhi-Gang Shao. "Structure and Interaction between the Novel Graphene-Like Planar Biphenylene Network and DNA: Molecular Dynamics Simulations." Physica E: Low-dimensional Systems and Nanostructures 146 (2023): 115547.
[38] Chen, Xin-Wei, Zheng-Zhe Lin, and Xi-Mei Li. "Biphenylene Network as Sodium Ion Battery Anode Material." Physical Chemistry Chemical Physics  (2023).
[39] Long, Christopher M, Marc A Nascarella, and Peter A Valberg. "Carbon Black Vs. Black Carbon and Other Airborne Materials Containing Elemental Carbon: Physical and Chemical Distinctions." Environmental pollution 181 (2013): 271-86.
[40] Tang, Meijie, and Sidney Yip. "Atomistic Simulation of Thermomechanical Properties of Β-Sic." Physical Review B 52, no. 21 (1995): 15150.
[41] Rahaman, Obaidur, Bohayra Mortazavi, Arezoo Dianat, Gianaurelio Cuniberti, and Timon Rabczuk. "A Structural Insight into Mechanical Strength of Graphene-Like Carbon and Carbon Nitride Networks." Nanotechnology 28, no. 5 (2016): 055707.
[42] Hudspeth, Mathew A, Brandon W Whitman, Veronica Barone, and Juan E Peralta. "Electronic Properties of the Biphenylene Sheet and Its One-Dimensional Derivatives." ACS nano 4, no. 8 (2010): 4565-70.
[43] Terrones, Humberto, Mauricio Terrones, E Hernández, N Grobert, Jean-Christophe Charlier, and PM Ajayan. "New Metallic Allotropes of Planar and Tubular Carbon." Physical review letters 84, no. 8 (2000): 1716.