شناسایی و طبقه‌بندی خطا در دو ریز شبکه متناوب (AC) متصل بهم با استفاده از تحلیل مُدال و جریان خطای تزریقی

نوع مقاله : مقاله برق

نویسندگان

دانشکده برق و کامپیوتر، دانشگاه سمنان، سمنان، ایران

چکیده

در این مقاله، روش جدید برای طبقه‌بندی انواع خطا با مقاومت کوچک در ریزشبکه‌های متناوب دوتایی متصل بهم از طریق خط ارتباطی و در وضعیت جزیره‌ای پیشنهاد شده است. روش پیشنهادی، انواع خطا را بر اساس تحلیل مدال جریان و تحلیل جریان خطای تزریقی به ریزشبکه طبقه‌بندی می‌کند. به منظور تحلیل مدال، از تبدیل کِلارک استفاده می‌شود تا جریان توالی صفر قابل پایش باشد؛ و برای یافتن مقدار جریان خطا تزریق شده، از روش ریخت‌شناسی ریاضی بکار گرفته شده است. در این مقاله، تئوری ریخت‌شناسی ریاضی با استفاده از فیلتر استخراج کننده پوش سیگنال، برای شناسایی تغییرات دامنه و اعوجاج در جریان از طریق تحلیل حوزه زمان، پیشنهاد شده است؛ تا شناسایی و طبقه‌بندی انواع خطا به صورت بهنگام انجام شود؛ و نسبت به انواع روش‌های پردازش سیگنال مبتنی بر تحلیل حوزه فرکانس ویا حوزه فرکانس-زمان دارای مزیت نیازمندی به سیستم مخابرات با پهنای باند و هزینه کمتر است. روش پیشنهادی برای طبقه‌بندی انواع خطای تکفاز به زمین، دو فاز بهم و به زمین، و سه فاز در ریزشبکه متصل بهم از طریق خط ارتباطی متناوب به عنوان نمونه موردی پیاده‌سازی شده است؛ و نتایج عددی، کارایی و موثر بودن روش پیشنهادی در طبقه‌بندی انواع خطا با مقاومت کوچک در ریرشبکه متناوب متصل بهم از طریق خط ارتباطی را به اثبات می‌رساند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Fault Detection and Classification in Two -Interconnected AC Microgrid at by Modal and Superimposed Analysis

نویسندگان [English]

  • Saber Armaghani
  • Zahra Moravej
Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran
چکیده [English]

In this paper, a new method is proposed for low fault resistance fault detection and classification in two interconnected microgrid with tie line connection in island situation (Islanded two interconnected AC microgrid). The proposed method classifies the types of faults based on modal and superimposed fault current analysis. In order to analyze the modal, the Clarke transform is used so that the zero-sequence current can be monitored. Also, mathematical morphology method is used to find the amount of injected fault current in signal processing context. In this article, the theory of mathematical morphology is proposed using signal closing filter to identify amplitude changes and distortion in the measured current through time domain analysis. This theory is implemented in this paper to identify and classify all types of faults in a timely manner. Additionally, comparing to another signal processing methods based on frequency domain analysis or frequency-time domain, it has the advantage of requiring a telecommunication system with lower bandwidth and cost. The proposed method for classifying single-phase to ground, two-phase to ground, and three-phase faults in two microgrids connected through a tie line has been simulated as a case study. The numerical results illustrate the efficiency and effectiveness of the proposed method in classifying the types of faults with small resistance.
 

کلیدواژه‌ها [English]

  • Islanded two interconnected AC microgrid
  • Current based protection scheme
  • Internal/External fault detection and classification
  • Modal and superimposed analysis
  • Mathematical morphology
[1] L. Bagherzadeh, H. Shahinzadeh, and G.B. Gharehpetian. "Scheduling of distributed energy resources in active distribution networks considering combination of techno-economic and environmental objectives." In 2019 International Power System Conference (PSC), pp. 687-695. IEEE, 2019.
[2] J. De La Cruz, Y. Wu, JE. Candelo-Becerra, J.C.  Vásquez, and J.M. Guerrero. "A review of networked microgrid protection: Architectures, challenges, solutions, and future trends." CSEE Journal of Power and Energy Systems (2023).
[3] B. John, A. Ghosh, M. Goyal, and F. Zare. "A DC power exchange highway based power flow management for interconnected microgrid clusters." IEEE Systems Journal 13, no. 3 (2019): 3347-3357.
[4] S. Abuzari, and P. Omidi. "Coordination of overcurrent relays in microgrids according to the input and output of resources." Modeling in Engineering 20, no. 70 (2022): 33-49 (in Persian)
[5] D.C. Yu, and S.H. Khan. "An adaptive high and low impedance fault detection method." IEEE Transactions on Power Delivery 9, no. 4 (1994): 1812-1821.
[6] H. Bai, J.H. Gao, Li. Wei, K. Wang, and M.F. Guo. "Detection of High-Impedance Fault in Distribution Networks Using Frequency-Band Energy Curve." IEEE Sensors Journal (2023).
[7] M. Banafer, and S.R. Mohanty. "Traveling wave based primary protection and fault localization scheme for MTDC grid considering IEC 61869-9 measurement standard." IEEE Transactions on Instrumentation and Measurement (2023).
[8] S.h. Som, and R.S. Subhransu. "Wavelet based fast fault detection in LVDC micro-grid." In 2017 7th International Conference on Power Systems (ICPS), pp. 87-92. IEEE, 2017.
[9] E.M. Amiri, and B. Vahidi. "Integrated protection scheme for both operation modes of microgrid using S-Transform." International Journal of Electrical Power & Energy Systems 121 (2020): 106051.
[10] S.h. Baloch, S.S. Samsani, and M.S. Muhammad. "Fault protection in microgrid using wavelet multiresolution analysis and data mining." IEEE Access 9 (2021): 86382-86391.
[11] P. Venkata, V. Pandya, and A.V. Sant. "Data mining model based differential microgrid fault classification using svm considering voltage and current distortions." J. Oper. Autom. Power Eng 11, no. 3 (2023): 162-172.
[12] R. Aiswarya, D.S. Nair, T. Rajeev, and V. Vinod. "A novel SVM based adaptive scheme for accurate fault identification in microgrid." Electric Power Systems Research 221 (2023): 109439.
[13] J.B. Thomas, S.G. Chaudhari, K.V. Shihabudheen, and N.K. Verma. "CNN-based transformer model for fault detection in power system networks." IEEE Transactions on Instrumentation and Measurement 72 (2023): 1-10.
[14] S. Baloch, and M.S. Muhammad. "An intelligent data mining-based fault detection and classification strategy for microgrid." IEEE Access 9 (2021): 22470-22479.
[15] Z. Moravej, and M. Ghahremani. "High impedance fault detection and classification based on pattern recognition." In Modernization of Electric Power Systems: Energy Efficiency and Power Quality, pp. 487-512. Cham: Springer International Publishing, 2023.
[16] J.Q. James, Y. Hou, A.Y. Lam, and V.O. Li. "Intelligent fault detection scheme for microgrids with wavelet-based deep neural networks." IEEE Transactions on Smart Grid 10, no. 2 (2017): 1694-1703.
[17] L.M. Kandasamy, and K. Jaganathan. "Intelligent Fault Diagnosis Using Deep Learning for a Microgrid with High Penetration of Renewable Energy Sources." Electric Power Components and Systems 51, no. 4 (2023): 332-350.
[18] E.B. Rocha, O.E. Batista, and D.S.L. Simonetti. "Differential analysis of fault currents in a power distribution feeder using ABC, αβ0, and DQ0 reference frames." Energies 15, no. 2 (2022): 526.
[19] S. Ansari, and O.H. Gupta. "Differential negative sequence power angle-based protection of microgrid feeders." Electric Power Components and Systems 49, no. 18-19 (2022): 1417-1431.
[20] A. Farshadi, B.K. Eydi, H. Nafisi, H. Askarian-Abyaneh, and A. Beiranvand. "Rate of Change of Direct-Axis Current Component Protection Scheme for Inverter-Based Islanded Microgrids." IEEE Access (2023).
[21] H. Lahiji, F.B. Ajaei, and R.E. Boudreau. "Non-pilot protection of the inverter-dominated microgrid." IEEE Access 7 (2019): 142190-142202.
[22] S. Ansari, O.H. Gupta, and O.P. Malik. "Fault Detection for Microgrid Feeders using Features Based on Superimposed Positive-Sequence Power." Journal of Modern Power Systems and Clean Energy (2023).
[23] A.M. Jarrahi, H. Samet, and T. Ghanbari. "Protection framework for microgrids with inverter‐based DGs: A superimposed component and waveform similarity‐based fault detection and classification scheme." IET Generation, Transmission & Distribution 16, no. 11 (2022): 2242-2264.
[24] N.K. Sharma, and S.R. Samantaray. "PMU assisted integrated impedance angle-based microgrid protection scheme." IEEE Transactions on Power Delivery 35, no. 1 (2019): 183-193.
[25] P.T. Manditereza, and R.C. Bansal. "Protection of microgrids using voltage-based power differential and sensitivity analysis." International Journal of Electrical Power & Energy Systems 118 (2020): 105756.
[26] F. Mumtaz, K. Imran, S.B.A. Bukhari, K.K. Mehmood, A. Abusorrah, M.A. Shah, and S.A.A. Kazmi. "A Kalman filter-based protection strategy for microgrids." IEEE Access 10 (2022): 73243-73256.
[27] M. Čuljak, H. Pandžić, and J. Havelka. "Mathematical Morphology-Based Fault Detection in Radial DC Microgrids Considering Fault Current from VSC." IEEE Transactions on Smart Grid (2022).
[28] C. Zhou, G. Zou, S. Zhang, M. Zheng, J. Tian, and T. Du. "Mathematical Morphology Based Fault Data Self Synchronization Method for Differential Protection in Distribution Networks." IEEE Transactions on Smart Grid (2022).
[29] Q.H. Wu, Z. Lu, and T. Ji. Protective relaying of power systems using mathematical morphology. Springer Science & Business Media, 2009.
[30] F. Hojatpanah, F.B. Ajaei, and H. Tiwari. "Reliable detection of high-impedance faults using mathematical morphology." Electric Power Systems Research 216 (2023): 109078.
[31] F. Zhang, and L. Mu. "New protection scheme for internal fault of multi-microgrid." Protection and Control of Modern Power Systems 4, no. 2 (2019): 1-12.
[32] T. Kauffmann, U. Karaagac, I. Kocar, S. Jensen, J. Mahseredjian, and E. Farantatos. "An accurate type III wind turbine generator short circuit model for protection applications." IEEE Transactions on Power Delivery 32, no. 6 (2016): 2370-2379.
[33] S. Adhikari, F. Li, and H. Li. "PQ and PV control of photovoltaic generators in distribution systems." IEEE Transactions on Smart Grid 6, no. 6 (2015): 2929-2941.