[1] L. Bagherzadeh, H. Shahinzadeh, and G.B. Gharehpetian. "Scheduling of distributed energy resources in active distribution networks considering combination of techno-economic and environmental objectives." In 2019 International Power System Conference (PSC), pp. 687-695. IEEE, 2019.
[2] J. De La Cruz, Y. Wu, JE. Candelo-Becerra, J.C. Vásquez, and J.M. Guerrero. "A review of networked microgrid protection: Architectures, challenges, solutions, and future trends." CSEE Journal of Power and Energy Systems (2023).
[3] B. John, A. Ghosh, M. Goyal, and F. Zare. "A DC power exchange highway based power flow management for interconnected microgrid clusters." IEEE Systems Journal 13, no. 3 (2019): 3347-3357.
[4] S. Abuzari, and P. Omidi. "Coordination of overcurrent relays in microgrids according to the input and output of resources." Modeling in Engineering 20, no. 70 (2022): 33-49 (in Persian)
[5] D.C. Yu, and S.H. Khan. "An adaptive high and low impedance fault detection method." IEEE Transactions on Power Delivery 9, no. 4 (1994): 1812-1821.
[6] H. Bai, J.H. Gao, Li. Wei, K. Wang, and M.F. Guo. "Detection of High-Impedance Fault in Distribution Networks Using Frequency-Band Energy Curve." IEEE Sensors Journal (2023).
[7] M. Banafer, and S.R. Mohanty. "Traveling wave based primary protection and fault localization scheme for MTDC grid considering IEC 61869-9 measurement standard." IEEE Transactions on Instrumentation and Measurement (2023).
[8] S.h. Som, and R.S. Subhransu. "Wavelet based fast fault detection in LVDC micro-grid." In 2017 7th International Conference on Power Systems (ICPS), pp. 87-92. IEEE, 2017.
[9] E.M. Amiri, and B. Vahidi. "Integrated protection scheme for both operation modes of microgrid using S-Transform." International Journal of Electrical Power & Energy Systems 121 (2020): 106051.
[10] S.h. Baloch, S.S. Samsani, and M.S. Muhammad. "Fault protection in microgrid using wavelet multiresolution analysis and data mining." IEEE Access 9 (2021): 86382-86391.
[11] P. Venkata, V. Pandya, and A.V. Sant. "Data mining model based differential microgrid fault classification using svm considering voltage and current distortions." J. Oper. Autom. Power Eng 11, no. 3 (2023): 162-172.
[12] R. Aiswarya, D.S. Nair, T. Rajeev, and V. Vinod. "A novel SVM based adaptive scheme for accurate fault identification in microgrid." Electric Power Systems Research 221 (2023): 109439.
[13] J.B. Thomas, S.G. Chaudhari, K.V. Shihabudheen, and N.K. Verma. "CNN-based transformer model for fault detection in power system networks." IEEE Transactions on Instrumentation and Measurement 72 (2023): 1-10.
[14] S. Baloch, and M.S. Muhammad. "An intelligent data mining-based fault detection and classification strategy for microgrid." IEEE Access 9 (2021): 22470-22479.
[15] Z. Moravej, and M. Ghahremani. "High impedance fault detection and classification based on pattern recognition." In Modernization of Electric Power Systems: Energy Efficiency and Power Quality, pp. 487-512. Cham: Springer International Publishing, 2023.
[16] J.Q. James, Y. Hou, A.Y. Lam, and V.O. Li. "Intelligent fault detection scheme for microgrids with wavelet-based deep neural networks." IEEE Transactions on Smart Grid 10, no. 2 (2017): 1694-1703.
[17] L.M. Kandasamy, and K. Jaganathan. "Intelligent Fault Diagnosis Using Deep Learning for a Microgrid with High Penetration of Renewable Energy Sources." Electric Power Components and Systems 51, no. 4 (2023): 332-350.
[18] E.B. Rocha, O.E. Batista, and D.S.L. Simonetti. "Differential analysis of fault currents in a power distribution feeder using ABC, αβ0, and DQ0 reference frames." Energies 15, no. 2 (2022): 526.
[19] S. Ansari, and O.H. Gupta. "Differential negative sequence power angle-based protection of microgrid feeders." Electric Power Components and Systems 49, no. 18-19 (2022): 1417-1431.
[20] A. Farshadi, B.K. Eydi, H. Nafisi, H. Askarian-Abyaneh, and A. Beiranvand. "Rate of Change of Direct-Axis Current Component Protection Scheme for Inverter-Based Islanded Microgrids." IEEE Access (2023).
[21] H. Lahiji, F.B. Ajaei, and R.E. Boudreau. "Non-pilot protection of the inverter-dominated microgrid." IEEE Access 7 (2019): 142190-142202.
[22] S. Ansari, O.H. Gupta, and O.P. Malik. "Fault Detection for Microgrid Feeders using Features Based on Superimposed Positive-Sequence Power." Journal of Modern Power Systems and Clean Energy (2023).
[23] A.M. Jarrahi, H. Samet, and T. Ghanbari. "Protection framework for microgrids with inverter‐based DGs: A superimposed component and waveform similarity‐based fault detection and classification scheme." IET Generation, Transmission & Distribution 16, no. 11 (2022): 2242-2264.
[24] N.K. Sharma, and S.R. Samantaray. "PMU assisted integrated impedance angle-based microgrid protection scheme." IEEE Transactions on Power Delivery 35, no. 1 (2019): 183-193.
[25] P.T. Manditereza, and R.C. Bansal. "Protection of microgrids using voltage-based power differential and sensitivity analysis." International Journal of Electrical Power & Energy Systems 118 (2020): 105756.
[26] F. Mumtaz, K. Imran, S.B.A. Bukhari, K.K. Mehmood, A. Abusorrah, M.A. Shah, and S.A.A. Kazmi. "A Kalman filter-based protection strategy for microgrids." IEEE Access 10 (2022): 73243-73256.
[27] M. Čuljak, H. Pandžić, and J. Havelka. "Mathematical Morphology-Based Fault Detection in Radial DC Microgrids Considering Fault Current from VSC." IEEE Transactions on Smart Grid (2022).
[28] C. Zhou, G. Zou, S. Zhang, M. Zheng, J. Tian, and T. Du. "Mathematical Morphology Based Fault Data Self Synchronization Method for Differential Protection in Distribution Networks." IEEE Transactions on Smart Grid (2022).
[29] Q.H. Wu, Z. Lu, and T. Ji. Protective relaying of power systems using mathematical morphology. Springer Science & Business Media, 2009.
[30] F. Hojatpanah, F.B. Ajaei, and H. Tiwari. "Reliable detection of high-impedance faults using mathematical morphology." Electric Power Systems Research 216 (2023): 109078.
[31] F. Zhang, and L. Mu. "New protection scheme for internal fault of multi-microgrid." Protection and Control of Modern Power Systems 4, no. 2 (2019): 1-12.
[32] T. Kauffmann, U. Karaagac, I. Kocar, S. Jensen, J. Mahseredjian, and E. Farantatos. "An accurate type III wind turbine generator short circuit model for protection applications." IEEE Transactions on Power Delivery 32, no. 6 (2016): 2370-2379.
[33] S. Adhikari, F. Li, and H. Li. "PQ and PV control of photovoltaic generators in distribution systems." IEEE Transactions on Smart Grid 6, no. 6 (2015): 2929-2941.