مکانیابی نقاط بهینه تنش در تحلیل ایزوژئومتریک

نویسندگان

دانشگاه صنعتی شاهرود

چکیده

تحلیل ایزوژئومتریک یک روش عددی جدید در مدلسازی و آنالیز مسائل ‏مهندسی است که انتظار می رود در آینده‌ای نه چندان دور بتواند جایگزین ‏روشهای عددی متداول نظیر اجزای محدود و روشهای بدون المان گردد. ‏اساس این روش فناوری نربز است که این امر باعث شده تا مدلسازی هندسه ‏در این روش بدون تقریب صورت پذیرد. اما در روشهای عددی وجود خطا در ‏تقریب تابع مجهول امری اجتناب ناپذیر است. یافتن نقاطی که در آنها تنش ‏بدست آمده از تحلیل ایزوژئومتریک از خطای کمتری نسبت به سایر نقاط ‏برخوردار باشد، موضوع این پژوهش است. در این مقاله اثبات می‌شود که این ‏نقاط بهینه تنش همان نقاط انتگرال گیری به روش گوس می‌باشند و محل ‏آنها با توجه به مرتبه توابع شکل نربز، منطبق بر حداقل تعداد نقاط مورد نیاز ‏جهت انتگرال گیری به روش گوس در تحلیل ایزوژئومتریک است. با استفاده ‏از این نقاط برای هر مولفه تنش یک سطح بهبود یافته تشکیل می شود که ‏جهت برآورد خطای ایزوژئومتریک مورد استفاده قرار گرفته است. به منظور ‏بررسی کارایی این نقاط بهینه تنش به مدلسازی سه مثال نمونه دارای حل ‏تحلیلی پرداخته شده است. نتایج بدست آمده از این پژوهش صحت وجود این ‏نقاط بهینه تنش را در محل حداقل نقاط مورد نیاز جهت انتگرال گیری ‏عددی به روش گوس در تحلیل ایزوژئومتریک نشان می دهند. ‏

کلیدواژه‌ها


عنوان مقاله [English]

Location of Optimal Stress Points in Isogeometric Analysis

نویسندگان [English]

  • Behrooz Hassani
  • Ahmad Ganjali
چکیده [English]

Abstract Isogeomteric Analysis is a newly developed method with some features that can be considered as ‎a potential substitute to other numerical methods such as finite elements and meshless approaches. ‎The NURBS technique, that allows precise geometrical modeling, plays an important role in this ‎method. However, similar to other numerical methods, existence of errors in the approximation of ‎the unknown function is inevitable. This paper is devoted to finding points with higher accuracy in ‎stress recovery by the isogeometric analysis. It can be shown that these points are coincident with ‎the Gauss quadrature points. By making use of these superconvergent points together with the ‎NURBS technique and the least square method, a surface is constructed for each component of ‎the stress tensor that represents the improved stresses. For this purpose, three examples with ‎available analytical results has been solved. The comparison of the obtained improved stresses ‎with the exact solution is used for the sake of verification of the proposed method. It is concluded ‎that the superconvergent points location in the isogeometric analysis are the same as the minimum ‎required Gauss points for the integration of a square element.‎

کلیدواژه‌ها [English]

  • Isogeometric Analysis
  • Superconvergent Points
  • Improved Stress
  • error estimation‎
  • The NURBS Technique
 
[1] Kagan, P., Fischer, A., Bar-Yoseph, P.Z. (1998). New B-Spline finite element approach for geometrical design and mechanical analysis, Int. J. Numer. Meth. Eng., 41  435-458.
[2] Hollig, K., Reif, U., Wipper, J. (2001). Weighted extended B-Spline approximation of dirichlet problems, SIAM J. Numer. Anal. 39, 2, 442-462.
[3] Kagan, P., Fischer, A., Bar-Yoseph, P.Z. (2003). Mechanically based models: adaptive refinement for B-Spline finite element, Int. J. Numer. Meth. Eng., 57 1145-1175.
[4] Hughes, T.G.R., Cottrell, J.A., Bazilevs, Y. (2005). Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg, 194, 4135–4195.
[5] Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y., (2009). Isogeometric Analysis: toward integration of CAD and FEA, Wiley.
[6] Zienkiewicz, O.C., Taylor, R.L., and Zhu, J.Z. (2005). The Finite Element Method, 6th edition, Elsevier Butterworth-Heinemann.
[7] Hassani, B, Ganjali, A, Tavakkoli, M, (2012). An isogeometrical approach to error estimation and stress recovery, European Journal of Mechanics A/Solids, 31, 101-109.
[8] Rogers, D.F., (2001). An Introduction to NURBS, Morgan Kaufmann Publishers.
[9] Piegl, L., and Tiller, W., (1997). The NURBS Book, 2nd ed., Springer-Verlag, New York.
[10] Hughes, T.J.R., Reali, A., Sangalli, G., (2010). Efficient quadrature for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg. 199 (5–8), 301–313.
‎[11] Zienkiewicz, O. c., (2006). The background of error estimation and adaptivity in finite element computations, Comput. Methods Appl. Mech. Engrg. 195 207–213.‎
‎[12] Hinton, E. and Campbell J., (1974). Local and Global Smoothing of Discontinuous Finite Element Functions Using a Least Square Method, Int. J. Numer. Meth. Eng., Vol. 8, pp.461-480.
‎[13] Oden, T. J. and Brauchli J., On the Calculation of Consistent Stress Distribution in Finite Element Approximation, Int. J. Numer. Meth. Eng., Vol. 3, pp. 317-325.
‎[14] Zienkiewicz, o.c. and Zhu, Z., (1992). The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique, Int. J. Numer. Meth. Eng., Vol. 33, pp. 1331-1364.
‎[15] Boroomand, B. and Zienkiewicz, o.c., (1997). Recovery by equilibrium in patchs (REP), Int. J. Numer. Meth. Eng.,  Vol.40, pp. 137-164.
‎[16] R´odenas, J. J. Tur, M. Fuenmayor, F. J. and Vercher A., (2007). Improvement of the superconvergent patch recovery technique by  the use of constraint equations: The SPR-C technique, Int. J. Numer. Meth. Eng.,  70:705–727, (2007).
[17] Sadd, M.H. (2005). ELASTICITY:Theory, Applications, and Numerics, Elsevier Butterworth–Heinemann.
[18] Gratsch, T., Bathe, KJ., (2005). A posteriori error estimation techniques in practical finite element analysis. Computers and Structures, vol, 83, p.p.  235–265.