ارائه روشی برای پیش‎پردازش تصویر جهت بهبود عملکرد JPEG 2000 در فشرده‎سازی تصویر

نوع مقاله : کاربردی

نویسندگان

دانشگاه شاهرود

چکیده

دو گام اساسی در فشرده‎سازی تصویر به شیوه JPEG 2000 تبدیل موجک و کدگذار صفحات بیتی می‎باشند. در این روش ابتدا از تصویر تبدیل موجک گرفته می‎شود، سپس بسته به نرخ فشرده‎سازی مورد نظر، تعدادی از صفحات بیتی ضرایب تبدیل موجک از پرارزش‎ترین بیت تا بیت کم‎ارزش‎تر کد می‎گردند. پس از دستیابی به نرخ فشرده‎سازی مورد نظر، سایر صفحات کم‎ارزش‎تر ضرایب موجک حذف می‎گردند. در به‌کارگیری این روش، تصاویری که وضوح کمتری دارند، ضرایب تبدیل موجک مربوط به نواحی فرکانس بالای آنها مقدار کوچکی پیدا می‎کنند و در نتیجه در صفحات بیتی کم‎ارزش‎تر واقع می‎شوند. این صفحات بیتی کم‎ارزش‎تر هنگام فشرده‎سازی، در مرحله کدگذاری حذف می‎گردند. از اینرو JPEG 2000 عملکرد محدودی در فشرده‎سازی تصاویر با وضوح کم، را دارا می‎باشد. در این مقاله به منظور بهبود عملکرد JPEG 2000 پیش‎پردازشی بر روی تصویر انجام می‎شود تا وضوح تصویر افزایش یابد. با افزایش وضوح تصویر، نواحی فرکانس بالا مقادیر قابل توجهی در ضرایب تبدیل موجک پیدا می‎کنند. در نتیجه اطلاعات این ضرایب در مرحله کدگذار صفحات بیتی تا حدود زیادی حفظ می‎شوند. نتایج نشان می‎دهد که پیش‎پردازش ارائه شده عملکرد JPEG 2000 را از لحاظ نرخ فشرده‌سازی و کیفیت تصویر بازیابی شده بهبود می‎بخشد. به طور دقیق‌تر، به ازای یک کیفیت تصویر بازیابی شده برابر در روش پیشنهادی و JPEG 2000، روش پیشنهادی به طور متوسط حدود 5/3 درصد نرخ فشرده‌سازی JPEG 2000 را بهبود می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Provide a method for image preprocessing to improve the performance of JPEG 2000 in image compression

نویسنده [English]

  • Sekine Asadi Amiri
چکیده [English]

In JPEG 2000, two fundamental steps in image compression are wavelet transform and bit-planes encoding. In this method, first the wavelet transform of the image is provided, then, depending on the desired compression rate, the number of bit-planes of the wavelet coefficients are coded from most significant bit to the least significant bit. After achieving the desired compression rate, the other less significant bit-planes of wavelet coefficients are disregarded. In applying this method for low contrast image, wavelet coefficients of high frequency regions have small amounts, so these values are reflected in low bit-planes. These low bit-planes are removed during compression in encoder. Hence, JPEG 2000 has limited performance especially in low contrast image compression. In this paper, to improve the performance of JPEG 2000 a preprocessing is performed on the image to increase its contrast. With increasing image contrast, high frequency regions would have higher values in wavelet coefficients. As a result, information of these coefficients is largely preserved at the bit-planes encoding stage. The results show that the proposed preprocessing method improves the performance of JPEG 2000 in terms of compression rate and retrieved image quality. In more detail, for an equal retrieved image quality in the proposed method and JPEG 2000,
the proposed method improves the compression rate of JPEG 2000 with an average of about 3.5%.

کلیدواژه‌ها [English]

  • Preprocessing
  • Image compression
  • Image contrast
  • JPEG 2000 method
   [1]      Saravanan, C., Ponalagusamy, R. (2011). “Lossless grey-scale image compression using source symbols reduction and huffman coding,” International Journal of Image Processing, Vol. 3, No. 5, pp. 246-251.
   [2]      Setia, V., Kumar, V. (2012). “Coding of DWT coefficients using run-length coding and huffman coding for the purpose of color image compression,” World Academy of Science, Engineering and Technology, Vol. 62.
   [3]      Al-laham, M., Emary, M. M. (2007). "Comparative study between various algorithms of data compression techniques," International Journal of Computer Science and Network Security (IJCSNS), Vol. 7, No. 4, pp. 281-291.
   [4]      Pennebaker, W. B., Mitchell, J. L. (1992). "JPEG: still image data compression standard," Springer, New York.
   [5]      Skodras, A., Christopoulos, C. Ebrahimi, T. (2001). “The JPEG 2000 still image compression standard,” IEEE Signal Processing, Vol. 18, pp. 36–58.
   [6]      Kim, J., Kim, J. Kyung, Ch. M. (2009). ”A lossless embedded compression algorithm for high definition video coding,” IEEE International Conference on Multimedia and Expo, pp. 193-196.
   [7]      Yap, M. H., Bister, M., Tat Ewe, H. (2003). “Gaussian blurring-deblurring for improved image compression,” 7th Digital Image Computing: Techniques and Applications, pp. 165-174.
   [8]      Hassanpour, H., Asadi Amiri, S. (2011). “Image quality enhancement using pixel wise gamma correction via svm classifier,” International Journal of Engineering, Vol. 24, No. 4, pp. 301-311.
   [9]      Jafari, R., Ziou, D., Rashidi, M. M. (2013). “Increasing image compression rate using steganography”, Expert Systems with Applications, Vol. 40, pp. 6918–6927.
[10]       Ernawan, F., Azman Abu, N., Suryana, N. (2014). “Integrating a Smooth Psychovisual Threshold into an Adaptive JPEG Image Compression”, journal of computers, Vol. 9, No. 3.
[11]       Bastani, V., Helfroush, M. S., Kasiri, K. (2010). “Image compression based on spatial redundancy removal and image inpainting”, J Zhejiang Univ-Sci C (Comput & Electron), Vol. 11, No. 2, pp. 92-100.
[12]      Kim, S. J., Hwang, D. Y., Yoo, G. H. (2005). “A preprocessing algorithm for efficient lossless compression of gray scale images,” IEEE International Conference on Control, Automation and Systems (ICCAS).
[13]      Pinho, A. J., Neves, A. (2003). “Block based histogram packing of color-quantized images,” IEEE International Conference on Multimedia & Expo, pp. 341-344.
[14]      Pinho, A. J., Neves, A. (2004). “Variable size block-based histogram packing for lossless coding of color-quantized images,” Proceedings of the Fourth International conference Visualization, Imaging, And Image Processing.
[15]      Nasr Esfahani, E., Samavi, S., Karimi, N., Shirani, S. (2007). ”Near-lossless image compression based on maximization of run length sequences,” International Conference on Information Processing, pp. 177-180.
[16]      Nasr Esfahani, E., Samavi, S., Karimi, N. (2008). “Near lossless image compression by local packing of histogram,” IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1197-1200.
[17]      Iwahashi, M., Kobayashi, H., Kiya, H. (2012). “Lossy compression of sparse histogram image,” IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1361-1364.
[18]      Asadi Amiri, S., Moudi, E. (2014). “Image quality enhancement in digital panoramic radiograph,” Journal of AI and Data Mining, Vol. 2, No. 1, pp. 1-6.
[19]      Wang, Z., Bovik, A. C. (2009). "Mean squared error: love it or leave it? a new look at signal fidelity measures," IEEE Signal Processing, Vol. 26, No. 1, pp. 98-117.