فضای کاری بهینه جابجایی دینامیکی برای ربات بازویی تک لینکی

نوع مقاله : مقاله مکانیک

نویسندگان

1 آزمایشگاه رباتیک و کنترل، دانشکده مهندسی مکانیک، دانشگاه سمنان، سمنان، ایران

2 دانشکده مهندسی مکانیک، دانشگاه سمنان، سمنان، ایران

3 دانشکده مهندسی مکانیک، دانشگاه امیر کبیر

چکیده

در جابجایی دینامیکی اجسام، با پرتاب جسم توسط ربات می‌توان جسم مورد نظر را در نقاطی بسیار دورتر از فضای کاری قابل دسترس ربات قرار داد. در این مقاله مفهوم فضای کاری قابل پرتاب یا فضای کاری جابجایی دینامیکی به صورت مجموعه نقاطی از فضا که ربات قادر به پرتاب جسم در آن‌ها می‌باشد، تعریف می‌گردد. حال جهت به دست آوردن ماکزیمم فضای کاری قابل پرتاب یعنی دورترین نقاطی که ربات می‌تواند جسم مورد نظر را در آن‌ها قرار دهد، لازم است تا در ابتدا مسأله پرتاب بهینه حل شود. مسأله پرتاب بهینه در این مقاله به صورت یک مسأله کنترل بهینه تعریف می‌شود که برای حل آن روش غیر مستقیم براساس قضیه اساسی حساب تغییرات به کار گرفته می شود. با اعمال معادله پرتاب به صورت یک شرط مرزی متحرک در مسأله، شرایط بهینگی استخراج شده به صورت یک مسأله مقدار مرزی دو نقطه‌ای در خواهد آمد که با حل آن‌ پاسخ پرتاب بهینه به دست خواهد آمد. نهایتاً براساس مسأله پرتاب بهینه، یک الگوریتم جهت محاسبه ماکزیمم فضای کاری قابل پرتاب ارائه می‌شود. نتایج شبیه‌سازی برای یک ربات تک لینکی ارائه می‌شود تا مفاهیم معرفی شده و کارایی روش پیشنهادی در حل مسأله بهینه نشان داده شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimal Dynamic Manipulation Workspace of a Single Link Robot Manipulator

نویسندگان [English]

  • Amin Nikoobin 1
  • Zahra Farashi 1
  • Mohsen Asgari 2
  • Mojtaba Moradi 3
1 Robotics and control Lab, Faculty of Mechanical engineering, Semnan University, Semnan, Iran.
2 Robotics and control Lab, Faculty of Mechanical engineering, Semnan University, Semnan, Iran.
3 Faculty of Mechanical engineering, Amir Kabir University, Tehran, Iran.
چکیده [English]

In the dynamic manipulation of objects, the aim is to throw an object by a robot to the desired target even outside the reachable workspace. In this paper, the concept of the throw-able workspace or dynamic manipulation workspace is defined as a set of points which the robot is able to throw the object at them. Thus, in order to obtain the maximum dynamic manipulation workspace which means the farthest points that object can be manipulated, it is necessary to solve the optimal throwing problem. To this end, the optimal throwing problem is defined as the optimal control problem solved using the indirect solution method based on the fundamental theorem of the calculus of variations. By applying the throwing equation as a moving boundary condition, the derived optimality conditions construct a two-point boundary value problem which its solution results in the optimal throwing. Finally, an algorithm is presented to calculate the maximum dynamic manipulation workspace. Then, simulation results are presented for a single link robot in order to evaluate the defined concept as well as the effectiveness of the proposed method for problem-solving.

کلیدواژه‌ها [English]

  • Dynamic manipulation
  • Workspace
  • Single link robot
  • Optimal control
  • Indirect method
 
[1] Mori, Wataru, Jun Ueda, and Tsukasa Ogasawara. (2010). A 1-dof dynamic pitching robot that independently controls velocity, angular velocity and direction of a ball, Advanced Robotics, vol. 24, pp. 921-942.
 
[2] Miyashita, Hideyuki, Tasuku Yamawaki, and Masahito Yashima. (2010), “Parts assembly by throwing manipulation with a one-joint arm.” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
 
[3] Acosta, L., Rodrigo, J.J., Mendez, J.A., Marichal, G.N., Sigut, M. (2003). Ping-Pong Player Prototype, IEEE Robotics and Automation Magazine, vol. 10, pp. 44-52.
 
[4] MSBL Sports, Jugs Football Machine. Available:http://www.msblsports.com/footballmachine.html.
 
[5] Suzuki, S., Inooka, H. (1997), “Golf-Swing Robot Emulating a Human motion.” Proceedings on IEEE International Workshop on Robot and Human Communication, pp. 28 -33.
 
[6] Adventure Sports Ltd., Clay Pigeon Shooting Basics. Available: http://www.adventuresport.co.uk/clay _shoot/clay_pigeon_shooting_basics.pdf.
[7] Frank, Heinz, et al. (2009), “1-dof-robot for fast and accurate throwing of objects.” IEEE Conference on Emerging Technologies & Factory Automation (ETFA).
 
[8] Shoji, T., Katsumata, Sh., Nakaura, Sh., Sampei, M. (2013). Throwing Motion Control of the Springed Pendubot, IEEE Transactins on control systems technology, vol. 21, pp. 950-957.
 
[9] Nakagawa, J., Qi AN, Ishikawa, Y., Oka, H., Takakusaki, K., Yamakawa, H., Yamashita, A., Asama, H. (2013). “Analysis of Joint Correlation between Arm and Lower Body in Dart Throwing Motion”. International Conference on Systems, Man, and Cybernetics.
 
[10] Hu, J.Sh., Chien, M. Ch., Chang, Y. J. Sh. H., Kai, Y. (2010). “A Ball-Throwing Robot with Visual Feedback”. The International Conference on Intelligent Robots and Systems, Taipei, Taiwan.
 
[11] Makarem, Laleh, Adel Akbarimajd, and M. Nili Ahmadabadi. (2009), “Dynamic manipulation of active objects: modeling and optimization.” IEEE/ASME International Conference on Advanced Intelligent Mechatronics.
 
[12] Beigzadeh, B., Meghdari, A., Sohrabpour, S. (2010). Passive Dynemic Object Manipulation: Preliminary Definition and Examples, Acta Automatica Sinica, Vol. 36, pp. 1711-1719.
 
[13] Akbarimajd, A., Ahmadabadi, M.N., Beigzadeh, B. (2007). Dynamic Object Manipulation by an array of 1-DOF manipulators: Kinematic modeling and planning, Robotics and Autonomous Systems, Vol. 55, pp. 444-459.
 
[14] Akbarimajd, Adel, and Majid Nili Ahmadabadi. (2007), “Manipulation by juggling of planar polygonal objects using two 3-DOF manipulators.” IEEE/ASME international conference on Advanced intelligent mechatronics.
[15] Tarvirdizadeh, B., Alipour, Kh. (2015), “Trajectory Optimization of Two-Link Rigid Flexible Manipulators in Dynamic Object Manipulation Missions”. RSI International Conference on Robotics and Mechatronics, Tehran, Iran.
[16] Tarvirdizadeh, B., Yousefi-Koma, A. (2010). Dynamic Object Manipulation by a Flexible Robotic Arm: Theory and Experiment, International Journal of Robotics & Automation, Vol. 27, pp. 263-285.
[17] Ichinose, Sh., Katsumata, Sh., Nakaura, Sh., Sampei, M., Acevedo, M., Haro, E., Martínez, F. (2008), “Throwing Motion Control Experiment utilizing 2-Link Arm with Passive Joint”. SICE Annual Conference.
[18] Lombai, F., Szederkenyi, G. (2009), “Throwing motion generation using nonlinear optimization on a 6-degree-of-freedom robot manipulator”. Proceedings of the IEEE International Conference on Mechatronics, Malaga, Spain.
 [19] Moosavian. S.A.A., Hosseini, Sh. (2012). Most Stable Motion Design of the Mobile Robot in the Specified Path, Journal of Modeling in engineering, Vol. 11, No. 33, pp. 1-14. (In Persian)
[20] Jannat, D., Masehian, E. (2012). Path Planning of Tractor-Trailer Robot by Fast Marching Methode (FMM), Journal of Modeling in engineering, Vol. 11, No. 34, pp. 31-47. (In Persian)
[21] Chettibi, T., Lehtihet, H.E., Haddad, M., Hanchi, S. (2004). Minimum cost    trajectory planning for industrial robots, European Journal of     Mechanics A/Solids, Vol. 23. No. 4, pp. 703–715.
[22] Hajizade, I., Ebrahimi, S., Payvandy, P. (2016). Optimization of a New-developed Needle Drive Mechanism in Sewing Machines using the Genetic Algorithm, Journal of Modeling in engineering, Vol. 14, No. 46, pp. 11-23. (In Persian)
[23] Gasparetto, A., Zanotto, V. (2010). Optimal trajectory planning for industrial robots, Advances in Engineering Software, Vol. 41, No. 4, pp. 548–556.
[24] Callies, R., Rentrop, P. (2008). Optimal Control of Rigid‐Link Manipulators by Indirect Methods, GAMM‐Mitteilungen, Vol. 31, No. 1, pp. 27-58.
[25] Boscariol, P., Gasparetto, A. (2013). Model-based trajectory planning for flexible-link mechanisms with bounded jerk, Robotics and Computer-Integrated Manufacturing, Vol. 29, No. 4, pp. 90-99.
[26] Callies, R., Rentrop, P. (2008). Optimal control of rigid‐link manipulators by indirect methods, GAMM‐Mitteilungen, Vol. 31, No. 1, pp. 27-58.
[27] Salehi, M., Nikoobin, A., (2014). Optimal trajectory planning of flexible joint manipulator: Maximum load carrying capacity-minimum vibration, Modares Mechanical Engineering, Vol. 13, No. 14, pp. 68-80.
[28] Ghasemi, M. H., Kashiri, N., Dardel,M. (2011). Time-optimal trajectory planning of robot manipulators in point-to-point motion using an indirect method, Journal of Mechanical Engineering Science, Vol. 226, No. 2, pp. 473-484.
[29] Nikoobin, A., & Moradi, M. (2016). Optimal balancing of the robotic manipulators, In Dynamic Balancing of Mechanisms and Synthesizing of Parallel Robots pp. 337-363. Springer International Publishing.
[30] Korayem, Moharam Habibnejad, et al. (2012). Analytical design of optimal trajectory with dynamic load-carrying capacity for cable-suspended manipulator, The International Journal of Advanced Manufacturing Technology, vol. 60, pp. 317-327.
[31] Korayem, M. H., Tourajizadeh, H., Jalali M., Omidi, E. (2012). Optimal Path Planning of Spatial Cable Robot Using Optimal Sliding Mode Control, International Journal of Advanced Robotic Systems, vol. 9, pp. 168.
[32] Korayem, M. H., Rahimi, H. N., Nikoobin, A. (2011). Path planning of mobile elastic robotic arms by indirect approach of optimal control, International Journal of Advanced Robotic Systems, Vol. 8, No. 1, pp. 10-20.
[33] Ghorbani, M. T., Salarieh, H., Assadian, N. (2011). Time optimal trajectory planning for a high speed planning boat, Journal of Control, Vol. 5, No. 3, pp. 57–68.
[34] Schilling, Robert. "Fundamentals of robotics." (2013).
[35] Kirk, Donald E. Optimal control theory: an introduction. Courier Corporation, (2012).