تعیین ثوابت معادله جانسون کوک جهت شبیه سازی فرآیند ماشینکاری با استفاده از الگوریتم بهینه سازی

نوع مقاله : مقاله مکانیک

نویسنده

دانشکده مهندسی، مرکز آموزش عالی محلات، محلات، ایران

چکیده

مدل ماده جانسون-کوک با در نظر گرفتن اثر سخت شدگی کرنشی و نرخ کرنشی ماده و اثر نرم شدگی ماده، به عنوان پرکاربردترین مدل ماده جهت تعیین رفتار پلاستیک ماده حین شبیه سازی فرآیند ماشینکاری مورد استفاده محقیقن قرار می گیرد. تعیین تجربی ثوابت این معادله امری هزینه بر و زمان بر می باشد. در این راستا در تحقیق حاضر روش جدیدی ارائه شد که بدون نیاز به صرف زمان و استفاده از تجهیزات گران قیمت مورد استفاده قرار می گیرد. در این روش با استفاده از الگوریتم بهینه سازی تکاملی و استفاده از تعدادی نتایج تجربی تنش سیلان، ثوابت معادله جانسون-کوک جهت شبیه سازی فرآیند براده برداری سوپر آلیاژ اینکونل 718 بدست آمد. نتایج بدست آمده بوسیله این روش با نتایج مدل های ماده سایر محقیقن که با آزمایشات تجربی و تحلیلی بدست آمده بود، مورد مقایسه و ارزیابی قرار گرفت. بر این اساس با پیاده سازی زیر برنامه نویسی در نرم افزار اجزاء محدود، به ازای هر مدل ماده شبیه سازی فرآیند ماشینکاری متعامد سوپر آلیاژ اینکونل 718 در شرایط مختلف ماشینکاری صورت پذیرفت و نتایج شبیه سازی نیروهای ماشینکاری (دو مولفه)، هندسه براده (سه مولفه) و حداکثر دما با مقادیر تجربی مورد مقایسه قرار گرفت. در نهایت میانگین کل خطای شبیه سازی 7/13% گزارش گردید که در مقایسه با سایر مدل های ماده از دقت مناسب و مطلوبی برخوردار می باشد و می توان ابراز امیدواری نمود که روش ارائه شده بخوبی در سایر تحقیقات نیز مورد استفاده قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determination of Johnson-Cook equation constants for simulation of machining process using the optimization algorithm

نویسنده [English]

  • Farshid Jafarian
Faculty of Engineering, Mahallat Institute of Higher Education, Mahallat, Iran
چکیده [English]

Johnson-Cook (JC) material model takes into account the effect of strain and strain rate hardening and thermal softening, and it is used as the most applicable material model by researchers for determination of material plastic behavior during simulation of machining process. Experimental determining the constants of this equation is costly and time-consuming task. In this regard, at the present study a new method was presented and it is utilized without necessity to long time procedure and costly equipment. In this method, JC equation constants for simulation of Inconel 718 alloy machining were obtained using optimization algorithm and couple of experimental flow stress results. Obtained results using this method were compared with results of other material models determined by researchers using the experimental and analytical tests. Based on this, using the implementation of user-subroutine in finite element software, simulation of machining process at different cutting conditions was performed for each material model and results of cutting forces (two components), chip geometry (three components), and maximum temperature were compared with corresponding experiments. Finally, average of total error was reported 13.7% that is suitable compared with other material models and it provides reasonable hope that, the presented strategy is employed successfully at other investigations.

کلیدواژه‌ها [English]

  • Material model
  • Finite element simulation
  • Orthogonal machining
  • Johnson-cook
 
[1]. F. Jafarian, D. Umbrello, S. Golpayegani, Z. Darake, “Experimental Investigation to Optimize Tool Life and Surface Roughness in Inconel 718 Machining”, Materials and Manufacturing Processes, Vol. 31, No. 13, 2016, pp. 1683-1691.
 
[2]. F Jafarian, S Masoudi, H Soleimani, D Umbrello, “Experimental and numerical investigation of thermal loads in Inocnel 718 machining”, Journal of Materials and Manufacturing Processes, Vol. 33, No. 9, 2018, pp. 1020-1029.
 
[3] F.-l. Sui, Y. Zuo, X.-h. Liu, L.-q. Chen, “Microstructure analysis on IN 718 alloy round rod by FEM in the hot continuous rolling process”, Applied Mathematical Modelling, vol. 37, No. 20, 2013, pp. 8776-8784.
 
(4) محمدرضا وزیری سرشک،  محمود سلیمی؛ محمد مشایخی فرم ریاضی مدل ساختاری ماده قابل کاربرد در تحلیل رفتار پلاستیک فلزات در مدل سازی ماشین کاری. مجله مدلسازی در مهندسی. دوره 10، شماره 31، زمستان 1391، صفحه37-48 .
 
[5]. F. Jafarian, H. Amirabadi, J. Sadri, “Integration of finite element simulation and intelligent methods for evaluation of thermo-mechanical loads during hard turning process”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 227, No. 2, 2013, pp. 235-248.
 
[6] P.J. Arrazola, T. Ozel, D. Umbrello, M. Davies, I.S. Jawahir, “Recent advances in modelling of metal machining processes”, CIRP Annals. – Manufacturing Technology, Vol. 62, No. 2, 2013, pp. 695–718.
 
[7]. M. Sima, T. Ozel, “Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti–6Al–4V”, International Journal of Machine Tools & Manufacture, Vol. 50, No. 11, 2010, pp. 943–960.
 
[8] J.J. Demange, V. Prakash, J.M. Pereira, “Effects of material microstructure on blunt projectile penetration of a nickel-based super alloy”, International Journal of Impact Engineering, Vol. 36, No. 8, 2009, pp. 1027–1043.
 
[9] X. Wang, C. Huang, B. Zou, H. Liu, H. Zhu, J. Wang, “Dynamic behavior and a modified Johnson–Cook constitutive model of Inconel718 at high strain rate and elevated temperature”, Journal of Materials Science Engineering, Vol. 580, No. 15, 2013, pp. 385–390.
 
[10] F. Klocke, D. Lung, S. Buchkremer, “Inverse Identification of the Constitutive Equation of Inconel 718 and AISI 1045 from FE Machining Simulations”, 14th CIRP Conference on Modeling of Machining Operations, Procedia CIRP, Vol. 8, 2013, pp. 212–217.
 
[11] S. Issler, Development of a Concept for Life Pre-diction of Blade-Disc-Connections of Gas turbines (originally in German) PhD Thesis, University of Stuttgart, Germany. 2002.
 
[12] A. V. Mitrofanov, V. I. Babitsky, V. V. Silberschmidt, “Thermo mechanical finite element simulations of ultrasonically assisted turning”, Journal of Computational Materials Science, Vol. 32, No. 3, 2005, pp. 463–471.
 
[13] J. M. Pereira, B. A. Lerch, “Effects of heat treatment on the ballistic impact properties of Inconel 718 for jet engine fan containment applications”, International Journal of Impact Engineering, Vol. 25, No. 8, 2001, pp. 715–733.
 
[14] J. Lorentzon, N. Jarvstrat, B. L. Josefson, “Modelling chip formation of alloy 718”, Journal of Materials processing Technology, Vol.  209, No. 10, 2009, pp. 4645–4653.
 
[15] R. Sievert, A. H. Hamann, D. Noack, P. Lowe, K. N. Singh, G. Kunecke, “Simulation of thermal softening, damage and chip segmentation in a nickel super-alloy,” In: Tonshoff, H.K., Hollmann, F. (Eds.), Hochgeschwindigkeitspannen. Vol. 8, 2005, pp. 446–469..
 
[16] T. Ozel, L. Llanos, J. Soriano, P. J. Arrazola, “3D finite element modelling of chip formation process for machining Inconel718: Comparison of FE software predictions”, Journal of Machining Science and Technology, Vol. 15, No. 1,  2011, pp. 21–46.
 
[17] A. Malakizadi, S. Cedergren, K. B. Surreddi, L. Nyborg, “A methodology to evaluate the machinability of Alloy 718 by means of FE simulation, International Conference on Advanced Manufacturing Engineering and Technologies”, Vol. 9, 2013, pp. 95-106.
 
[18] Prete A.d., Filice L., Umbrello D, “Numerical simulation of machining nickel-based alloys”, 14th CIRP Conference on Modeling of Machining Operations, Vol. 8, 2013, pp. 539-544.
 
[19] Ozel T, “Modeling of hard part machining: effect of insert edge preparation in CBN cutting tools”, Journal of Materials processing technology”, Vol. 141, No. 2, 2003, pp. 284–293.
 
(20) زینب سادات میرزایی؛ اکبر فرزانگان. بهینه‌سازی تک‌هدفه مدار آسیای گلوله‌ای مجتمع فسفات اسفوردی بر پایه الگوریتم ژنتیک. مجله مدلسازی در مهندسی، دوره 11، شماره 33، تابستان 1392، صفحه 15-25  
 
(21) حسین امیر آبادی، جواد عاشوری، فرشید جعفریان. بهینه سازی برشکاری جت آب همراه با ذرات ساینده با استفاده از روش شبکه عصبی - الگوریتم ژنتیک. مجله مدلسازی در مهندسی، دوره 8، شماره 23، زمستان 1389، صفحه 25-35  
 
[22] F. Jafarian, M. Imaz Ciaran, D. Umbrello, P.J. Arrazola, L. Filice, H. Amirabadi, “Finite element simulation of machining Inconel 718 alloy including microstructure changes”, International Journal of Mechanical Sciences, Vol. 88, 2014, pp. 110-121.
 
[23] D. Umbrello, “Finite element simulation of conventional and high speed machining of Ti6Al4V alloy”, Journal of Materials Processing Technology, Vol. 196, No. 1, 2008, pp. 79-87.
 
 
[24]. Filice L, Micari F, Rizzuti S, Umbrello D, “A critical analysis on the friction modelling in orthogonal machining. International Journal of Machine Tools and Manufacture”, Vol. 47, No. 3, 2007, pp. 709-714.
 
[25]. Ceretti E, Filice L, Umbrello D, Micari F, ALE simulation of orthogonal cutting: a new approach to model heat transfer phenomena at the tool-chip interface. CIRP Annals-Manufacturing Technology, Vol. 56, No. 1, 2007, pp. 69-72.
 
[26] G. Rotella, D. Umbrello, Finite element modeling of microstructural changes in dry and cryogenic cutting of Ti6Al4V alloy, CIRP Annals-Manufacturing Technology, Vol. 63, No. 1, 2014, pp. 69-72.