مطالعه تجربی تأثیر زوایای حمله بر عملکرد هیدرولیکی- حرارتی یک لوله بادامکی شکل شار ثابت در جریان عرضی

نوع مقاله : مقاله مکانیک

نویسندگان

1 گروه مهندسی مکانیک، دانشگاه آزاد اسلامی واحد تهران مرکزی

2 عضو هیئت علمی گروه مکانیک، دانشگاه آزاد اسلامی واحد تهران مرکزی

چکیده

هدف از این مطالعه تجربی‌ تأثیر زاویه‌ حمله بر عملکرد هیدرولیکی- حرارتی یک لوله بادامکی شار ثابت به کمک روش تجربی در جریان عرضی از هوا است. محدوده‌ رینولدز آزمایش بر مبنای قطر معادل 42000 > Re_(D_eq ) > 15500 است. زاویه حمله‌ لوله‌ها با جریان عرضی هوا 180 > α > 0 است. با مشاهده نتایج می‌توان دریافت روند تغییرات ضریب درگ فشاری و عدد ناسلت میانگین با افزایش زاویه حمله به صورت موج می‌باشد. ضریب درگ فشاری و عدد ناسلت متوسط به‌دست آمده در محدوده رینولدز مطالعه مورد بررسی قرار گرفت و نتایج نشان می‌دهند در زوایای صفر و 150 درجه پایین‌ترین و در زاویه‌ 90 درجه بالاترین مقدار به‌دست آمده است. همچنین با مقایسه‌ عملکرد هیدرولیکی- حرارتی لوله مشاهده گردید عملکرد زوایای صفر و 150 درجه به مقدار 31 تا 125 درصد از دیگر زوایا بیشتر می‌باشد. همچنین عملکرد هیدرولیکی- حرارتی زوایای صفر و 150 درجه به میزان 36 تا 82 درصد از لوله‌ دایروی معادل بیشتر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental study on The Angle of attack effect on Hydraulic- Thermal performance of a cam-shaped tube with constant heat flux in cross flow

نویسندگان [English]

  • Kamran Salehi Afshar 1
  • Arash Mirabdolah Lavasani 2
  • Saman Abolfathi 1
  • Peyman Mobedi 1
1 Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
2 Faculty Member of Islamic Azad University, Central Tehran Branch
چکیده [English]

An experimental study was made to determine the effect of angle of attack on Hydraulic- Thermal Performance from a cam-shaped tube with constant heat flux in cross flow. Reynolds numbers based on an equivalent diameter are within 15500 < Re_(D_eq ) < 42000. Angle of attack is between 0 < α < 180 using air as fluid for cross flow. Results indicate that with increasing the angle of attack from 0˚ to 90˚ the mean nusselt number and drag coefficient increases about 7-13 and 114-122%, respectively. Drag coefficient and mean Nusselt number have been studied and the results demonstrate that in all Reynolds numbers the angles of 0˚ and 150˚ results in lowest and 90˚ results in the highest amount. A Hydraulic-Thermal comparison of the tube was made and the results show that the angles of 0˚ and 150˚ have the best performance comparing to other angles and the difference is about 31-125 %. Also angles of 0˚ and 150˚ are about 36-82 % better than a circular tube with equivalent diameter.

کلیدواژه‌ها [English]

  • Hydraulic- Thermal
  • Cam-Shaped Tube
  • Angle of Attack
  • Constant Heat Flux
  • Cross flow
[1] کامیار کمانی و روح ا... رفعی " بررسی انتقال حرارت و جریان آرام نانوسیال از دیدگاه قانون دوم ترمودینامیک در یک مبدل حرارتی جریان مخالف"، نشریه مدل‌سازی در مهندسی، دوره 13، شماره 41، تابستان 1394، صفحه 47-57.
[2] مازیار دهقان، نیما تیرانداز و محمد صادق ولی پور، "مبدل دو لوله‌ای مارپیچ پر شده از محیط متخلخل تحت فشار تحت شار حرارتی نامتقارن". نشریه مدل‌سازی در مهندسی، دوره 16، شماره 52، بهار 1397، صفحه 409-418. 
[3] علی زینلی، حسین اقبالی و وحید رفیعی، "مدل‌سازی بازیاب‌های حرارتی دوار". نشریه مدل‌سازی در مهندسی، دوره 10، شماره 28، بهار 1391، صفحه 9-18. 
[4] L. Lamarche, "Horizontal ground heat exchangers modeling", Applied thermal engineering, Vol. 155, 2019, pp. 535-545.
[5] R. Whalley, and K.M. Ebrahimi, "Heat exchanger dynamic analysis", Applied mathematical modeling, Vol. 62, 2018, pp. 38-50.
[6] J. Chen, G. Cui , and Y. Xiao, "An analytical solution to the dynamic behavior of heat exchanger networks", International Journal of Heat and Mass Transfer, Vol. 126, 2018, pp. 466-478.
[7] K. M. Krall, and E. R. G. Eckert, "Heat Transfer to a Transverse Circular Cylinder at Low Reynolds Number Including Refraction Effects", Heat Transfer, Vol. 3, 1970, pp. 225-232.
[8] A. Zukauskas, "Heat Transfer from Tubes in Cross Flow", J. P. Hartnett and F. Irvine, Jr., Eds., advances in Heat Transfer, vol. 8, Academic Press, New York, 1972.
[9] R. Hilpert, and G. Forsch, Ingenieurwes., Vol. 4, No. 215, 1933.
[10] S. W. Churchil, and M. J. Bernstein, Heat Transfer. 99, 300, 1977.
[11] H. Schlichting, Boundary Layer Theory, Springer, New York, 2000.
[12] T. Ota, , S. Aiba, T. Tsuruta, and M. Kaga, "Forced Convection Heat Transfer from an Elliptic Cylinder of Axis Ratio 1: 2", Bulletin of JSME, Vol. 26, No. 212, 1983, pp. 262–267.
[13] A. Nouri-Borujerdi, and A. M. A. Lavasani, "Flow Visualizations around a Non-Circular Tube", IJE Transactions Vol. 19, No. 1, 2006, pp. 73-82.
[14] A. Nouri-Borujerdi, and A.M. Lavasani, "Experimental study of forced convection heat transfer from a cam shaped tube in cross flows", International Journal of Heat and Mass Transfer Vol. 50, 2007, pp. 2605-2611.
[15] A. Nouri-Borujerdi, and A. M. A. Lavasani, "Pressure loss and heat transfer characterization of a cam-shaped cylinder at different orientations” ", ASME J Heat Transfer Vol. 130:124503, 2008.
[16] M. Ishak, T. A. Tahseen, and M. M. Rahman, "Experimental investigation on heat transfer and pressure drop characteristics of air flow over a staggered flat tube bank in cross-flow", International Journal Automotive and Mechanical Engineering Vol. 7, 2013, pp. 900–911.
[17] M. A. Abd-Rabbo, N. S. Berbish, M. A. Mohammad, and M. M. Mandour, "Forced Convection Heat Transfer from three dimensional bodies in Cross-Flow", Engineering Research Journal Vol. 137, March, M1-M19, 2013.
[18] A. Swain, and M. K. Das, "Flow boiling of distilled water over plain tube bundle with uniform and varying heat flux along the height of the tube bundle", Experimental Thermal and Fluid Science Vol. 82, 2017, pp. 222–230.
 [19] نادر دیزجی، محمد نجفی و مهدی قائمی "بررسی تجربی انتقال گرمای جابه‌جایی اجباری بر روی لوله بادامکی و لوله مدورشکل در جریان خارجی آرام". فصلنامه علمی پژوهشی  مکانیک هوافضا جلد 12 شماره 3، 1395، صفحه 54-45. 
[20] S. Chamboli, T. Tang, P.Yu, and R. Lu, "Effect of shape modification on heat transfer and drag for fluid flow past a cam-shaped cylinder International", Journal of Heat and Mass Transfer, Vol.131, 2019, pp. 1147-1163.
[21] C. K. Mangrulkar, A. S. Dhoble, A. R. Deshmukh, and S. A. Mandavgane, "Numerical investigation of heat transfer and friction factor characteristics from in-line cam shaped tube bank in crossflow", Applied thermal engineering, Vol. 110. 2017, pp. 521-538.
[22] F. P. Incropera, D. P. Dewitt, T. L. Bergman, and Lavine, Introduction to Heat Transfer, 5th edition, Wiley, New York, 2002.
[23] JHT Editorial Board., "Journal Heat Transfer Policy on Reporting Uncertainties in Experimental Measurements and Results", ASME J. Heat Transfer, Vol. 115, 1993, PP. 5-6.
[24] F. M. White, Fluid Mechanics, McGraw-Hill, New York, 2005.