بررسی تأثیر خواص اتصال زمینه به الیاف بر رفتار شکست مواد مرکب

نوع مقاله : مقاله مکانیک

نویسندگان

1 Amirkabir university of technology

2 دانشکده مکانیک، دانشگاه دامغان، سمنان، ایران

3 مهندسی هوافضا، پژوهشگاه هوافضا، تهران، ایران

4 دانشکده مهندسی هوافضا، دانشگاه صنعتی امیرکبیر

چکیده

رفتار شکست مواد مرکب حساسیت زیادی به خواص مکانیکی مادة زمینه، ویژگی سطح الیاف و خواص اتصال بین زمینه و الیاف دارد و این خواص با توجه به نوع ماده و فرآیند تولید مواد مرکب مطابق با تحقیقات پیشین آزمایشگاهی در محدودة‌ وسیعی تغییر می‌کنند. مقاله حاضر با ارائه مدل میکرومکانیکی از میکروساختار مواد مرکب، میزان اثرگذاری خواص زمینه و اتصال آن با الیاف را بر رفتار شکست مواد مرکب بررسی می‌نماید. توزیع الیاف در این مدل مطابق با مشاهدات آزمایشگاهی به صورت تصادفی و شعاع الیاف به صورت یک توزیع نرمال و با چیدمان تصادفی توصیف می‌شود. الیاف با مدل الاستیک خطی، زمینه با مدل الاستوپلاستیک همراه با معیار داکر-پراگر و اتصال بین آنها با استفاده از المان چسبناک مدل‌سازی می‌شود. رفتار شکست با تحلیل اجزای محدود سلول واحد متناوبی از میکروساختار و در کسر حجمی متفاوتی از الیاف و گستره وسیعی از خواص مواد تحلیل می‌شود. تحلیل میکرومکانیک در اندازه المان‌های مختلف، برای اطمینان از دقت محاسبات انجام خواهد شد و اندازة مناسب المان با توجه به درصد حجمی الیاف تعیین می‌گردد. میزان اثرگذاری خواص اتصال بین زمینه با الیاف شامل استحکام اتصال و انرژی شکست در دو جهت محوری و برشی و متغیر توانی انرژی شکست ترکیبی بر روی رفتار شکست سلول واحد بررسی می‌شود و با انجام تحلیل با خواص مختلف، متغیرهای دارای بیشترین تأثیر بر رفتار شکست مواد مرکب شناسایی می‌شوند.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of fiber-matrix interface properties on damage behavior of composite materials

نویسندگان [English]

  • Mohammad Palizvan 1
  • Mohammad Ali Eskandarzadeh Ershad 2
  • Mohammad Tahaye Abadi 3
  • Mohammad Homayoune Sadr 4
2 Mechanical Engineering Department, Damghan University, Semnan, Iran
3 Aerospace Research Institute, Ministry of Science, Research and Technology
4 Aerospace Engineering Department, Amirkabir University of Technology,
چکیده [English]

In this study, using a sample volumetric element, the damage behavior of composite materials has been investigated using representative volume elements (RVEs). The two damage modes of fiber-matrix debonding and matrix cracks are modeled and analyzed as dominant modes. A new algorithm is developed to generate a random distribution of fibers in the RVE, and it is possible to create a fiber distribution with a normal distribution of fiber radii. The fiber material is considered linear elastic and the elastic-plastic matrix behavior is modeled with Drucker–Prager's criterion. The fiber-matrix debonding is modeled by cohesive elements which lead to matrix cracking. Initially, the random distribution of the fiber in RVE was created based on the assumed geometric dimensions and the fiber volume percentage with the code developed in MATLAB software. then, loading, periodic boundary condition, and homogenization process have applied by using the Abaqus software. The results showed that different mesh size is needed for RVEs with various fiber volume fractions. Moreover, the effects of different cohesive zone parameters are described in detail.

کلیدواژه‌ها [English]

  • Fiber-matrix debonding
  • Matrix crack
  • Cohesive element
  • RVE
  • Composite Material
 
[۱] محمود مهرداد شکریه، زهرا شکریه و مهرداد داورپناه، "بررسی تحلیلی، عددی و تجربی سازه‌ای با صفحات تاشده کامپوزتی" نشریه مدل سازی در مهندسی، دوره 13، شماره 42، پاییز 1394، صفحه ۱-۱۵.
[۲] محمدرضا روح پرور و حسن حاجی کاظمی، "کاربرد مصالح FRP در بادبندهای کمانش ناپذیر"، نشریه مدل سازی در مهندسی دوره 15، شماره 50، پاییز 1396، صفحه ۲۲۵-۲۳۵.
[۳] محمود مهرداد شکریه و افشین زین الدینی، "مدل‌سازی چقرمگی شکست تورق مود ترکیبی I و II در نمونه یکسرگیردار دو لبه نامتقارن کامپوزیت‌های لایه‌ای" نشریه مدل سازی در مهندسی،دوره 13، شماره 41، تابستان 1394، صفحه 1-11.
[4] T. Vaughan and C. McCarthy, "Micromechanical modelling of the transverse damage behaviour in fibre reinforced composites", Composites Science and Technology, Vol. 71, No. 3, pp. 388-396, 2011.
[5] C. González and J. LLorca, "Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: microscopic mechanisms and modeling", Composites Science and Technology, Vol. 67, No. 13, pp. 2795-2806, 2007.
[6] E. Totry, C. González, and J. LLorca, "Failure locus of fiber-reinforced composites under transverse compression and out-of-plane shear", Composites Science and Technology, Vol. 68, No. 3-4, pp. 829-839, 2008.
[7] T. Guillén-Hernández, I. G. Garcia, J. Reinoso, and M. Paggi, "A micromechanical analysis of inter-fiber failure in long reinforced composites based on the phase field approach of fracture combined with the cohesive zone model", International Journal of Fracture, pp. 1-23, 2019.‏
[8] E. Carrera, I. Kaleel, and M. Petrolo, "Numeriacal Simulation Of Failure in Fiber Reinforced Composites ", (2019).‏
[9] T. Hobbiebrunken, M. Hojo, T. Adachi, C. De Jong, and B. Fiedler, "Evaluation of interfacial strength in CF/epoxies using FEM and in-situ experiments", Composites Part A: Applied Science and Manufacturing, Vol. 37, No. 12, pp. 2248-2256, 2006.
[10] T. Vaughan and C. McCarthy, "A combined experimental–numerical approach for generating statistically equivalent fibre distributions for high strength laminated composite materials", Composites Science and Technology, Vol. 70, No. 2, pp. 291-297, 2010.
[11] Y. Ismail, D. Yang, and J. Ye, "Discrete element method for generating random fibre distributions in micromechanical models of fibre reinforced composite laminates", Composites Part B: Engineering, Vol. 90, pp. 485-492, 2016.
[12] D. Trias, J. Costa, A. Turon, and J. Hurtado, "Determination of the critical size of a statistical representative volume element (SRVE) for carbon reinforced polymers", Acta materialia, Vol. 54, No. 13, pp. 3471-3484, 2006.
[13] L. Yang, Y. Yan, Z. Ran, and Y. Liu, "A new method for generating random fibre distributions for fibre reinforced composites", Composites Science and Technology, Vol. 76, pp. 14-20, 2013.
[14] A. Melro, P. Camanho, and S. Pinho, "Generation of random distribution of fibres in long-fibre reinforced composites", Composites Science and Technology, Vol. 68, No. 9, pp. 2092-2102, 2008.
[15] A. R. d. O. S. Melro, "Analytical and numerical modelling of damage and fracture of advanced composites", 2011.
[16] L. Yang, Zh. W, Y. Cao, and Y. Yan, "Micromechanical modelling and simulation of unidirectional fibre-reinforced composite under shear loading", Journal of Reinforced Plastics and Composites 34.1 (2015): 72-83.
[17] B. Fiedler, M. Hojo, S. Ochiai, K. Schulte, and M. Ando, "Failure behavior of an epoxy matrix under different kinds of static loading", Composites Science and Technology, Vol. 61, No. 11, pp. 1615-1624, 2001.
[18] G. Han, Zh. Guan, X. Li, W. Zhang, and Sh. D,"Microscopic progressive damage simulation of unidirectional composite based on the elastic–plastic theory", Journal of Reinforced Plastics and Composites 34.3 (2015): 232-247.
[19] E. Reedy Jr, F. Mello, and T. Guess, "Modeling the initiation and growth of delaminations in composite structures", Journal of Composite Materials, Vol. 31, No. 8, pp. 812-831, 1997.
[20] A. Turon, P. P. Camanho, J. Costa, and C. Dávila, "A damage model for the simulation of delamination in advanced composites under variable-mode loading", Mechanics of materials, Vol. 38, No. 11, pp. 1072-1089, 2006.
[21] C. G. Dávila, C. A. Rose, and P. P. Camanho, "A procedure for superposing linear cohesive laws to represent multiple damage mechanisms in the fracture of composites", International Journal of Fracture, Vol. 158, No. 2, pp. 211-223, 2009.
[22] S. Swaminathan, N. Pagano, and S. Ghosh, "Analysis of interfacial debonding in three-dimensional composite microstructures", 2006.
[23] S. Li and S. Ghosh, "Debonding in composite microstructures with morphological variations," International Journal of computational methods, Vol. 1, No. 01, pp. 121-149, 2004.
[24] N. Chandra, H. Li, C. Shet, and H. Ghonem, "Some issues in the application of cohesive zone models for metal–ceramic interfaces", International Journal of Solids and Structures, Vol. 39, No. 10, pp. 2827-2855, 2002.
[25] ‪A. Abaqus, "Standard user's manual", ABAQUS Inc, 2003.
[26] ‪Z. Xia, Y. Zhang, and F. Ellyin, "A unified periodical boundary conditions for representative volume elements of composites and applications", International Journal of Solids and Structures, Vol. 40, No. 8, pp. 1907-1921, 2003.
[27] ‪V.-D. Nguyen, E. Béchet, C. Geuzaine, and L. Noels, "Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation", Computational Materials Science, Vol. 55, pp. 390-406, 2012.
[28] E. J. Barbero, "Finite element analysis of composite materials using ANSYS. CRC press", 2013. 
[29] M. Palizvan, M. H. Sadr, and M. Tahaye Abadi. "Effect of interface properties on micromechanical damage behavior of fiber reinforced composites", Materials Today Communications ,Vol. 23, pp. 100856, 2020.‏ ‏