مدلسازی و شبیه سازی راکتور غشایی تراوش تبخیری طی فرآیند استری شدن لوولینیک اسید با اتانول به منظور تولید اتیل لوولینات:آنالیز دینامیک سیالات محاسباتی (CFD)

نوع مقاله : مقاله شیمی

نویسندگان

1 'گروه مهندسی شیمی، دانشکده انرژی های تجدیچذیر، دانشگاه صنعتی ارومیه، ارومیه، ایران

2 گروه مهندسی شیمی، دانشکده مهندسی شیمی، دانشگاه صنعتی ارومیه، ارومیه، استان آذربایجان غربی، ایران

3 گروه مهندسی شیمی، دانشگاه صنعتی ارومیه

چکیده

در مطالعه‌ی حاضر، عملکرد راکتور غشائی تراوش تبخیری طی واکنش استریفیکاسیون لوولینیک اسید با اتانول بر پایه روش دینامیک سیالات محاسباتی (CFD) به منظور تولید اتیل لوولینات، مدلسازی و شبیه‌سازی شده است. گرم شدن کره زمین ناشی از اثر گلخانه ای امروزه به عنوان یک مسئله مهم زیست محیطی شناخته می‌شود. از عوامل مهم اثر گلخانه‌ای تولید اکسیدهای گوگرد، اکسیدهای نیتروژن و دی اکسید کربن می باشد که پس از احتراق سوخت تولید می شوند. از اینرو یکی از راهکارها برای حل این مشکل ، ماده افزودنی بر پایه زیست توده می باشد که منجر می شود سوخت در حین احتراق عملکرد بهتری را داشته باشد و از تولید گازهای مذکور در جو جلوگیری می کند. به همین منظور به عنوان یک راهکار حل مشکل مذکور در این تحقیق، یک مدل دو بعدی متقارن همدما برای راکتور غشائی تراوش تبخیری (PVMR)ارائه شده است. در این راستا پس از مدلسازی و شبیه سازی عملکرد راکتور بستر ثابت و مقایسه‌ی نتایج آن با داده‌های آزمایشگاهی، مشاهده گردید تطابق خوبی (1 درصدخطا) بین نتایج تئوری و آزمایشگاهی حاصل شده است. به منظور درک بهتر از کارائی راکتور غشائی تراوش تبخیری در طی واکنش استریفیکاسیون، تاثیر پارامترهای مختلف عملیاتی (دمای واکنش، دبی جریان خوراک، نسبت مولار خوراک و بارگذاری کاتالیست) بر روی مفاهیم درصد تبدیل لوولینیک اسید و درصد حذف آب بررسی شده‌اند. به عنوان یک نتیجه کلی در تمامی شرایط عملیاتی، راکتور غشائی تراوش تبخیری نسبت به راکتور بستر ثابت معمولی(TR) عملکرد بهتری را نشان داده است.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling and Simulation of pervaporation membrane reactor during levulinic acid esterification process with ethanol to produce ethyl levulinate: computational fluid dynamic (CFD) analysis

نویسندگان [English]

  • Milad Ghahremani 1
  • kamran ghasemzadeh 2
  • Elham Jalilnejad 3
1 Chemical engineering department, renewable energy faculty, urmia university of technology, Urmia, Iran
2 chemical engineering department, Urmia university of technology, Urmia, West Azerbaijan, Iran
3 Department of Chemical Engineering, Urmia university of Technology
چکیده [English]

In the present study, the performance of the pervaporation membrane reactor during the esterification reaction of levulinic acid with ethanol to produce ethyl levulinate was modeled based on computational fluid dynamics (CFD) method. Global warming due to the greenhouse effect is now recognized as an important environmental issue. Important factors in the greenhouse effect are the production of sulfur oxides, nitrogen oxides and carbon dioxide, which are produced after the combustion of fuel. Therefore, one of the solutions to solve this problem is a biomass-based additive that leads to better performance of the fuel during combustion and prevents the production of these gases in the atmosphere. Therefore, a symmetric two-dimensional model is provided for the pervaporation membrane reactor (PVMR). In this regard, after modeling and simulating the performance of a fixed bed reactor and comparing its results with laboratory data, it was observed that a good agreement (1% error) was obtained between the theoretical and laboratory results. In order to better understanding of the efficiency of the pervaporation membrane reactor during the esterification reaction, the effect of different operating parameters (reaction temperature, feed flow rate, feed molar ratio and catalyst loading) on the levulinic acid conversion and water removal percentages have been investigated. As a general result in all operating conditions, the pervaporation membrane reactor has performed better than a conventional fixed bed (TR) reactor.

کلیدواژه‌ها [English]

  • Modeling and Simulation
  • Pervaporation Membrane Reactor
  • Levulinic acid
  • Ethyl levulinate
[1] D. Unlu, O. Ilgen, and N. D. Hilmioglu, "Biodiesel additive ethyl levulinate synthesis by catalytic membrane: SO4− 2/ZrO2 loaded hydroxyethyl cellulose", Chemical Engineering Journal, Vol. 302, 2016, pp. 260-268.‏
[2] F. U. Nigiz, and N. D. Hilmioglu, "Green solvent synthesis from biomass based source by biocatalytic membrane reactor", International Journal of Energy Research, Vol. 40, No. 1, 2016, pp. 71-80.‏
[3] S. H. Shuit, and S. H. Tan, "Esterification of palm fatty acid distillate with methanol via single-step pervaporation membrane reactor: A novel biodiesel production method", Energy Conversion and Management, Vol. 201, 2019, pp. 112-110.‏
[4] N. Hajilary, M. Rezakazemi, and S. Shirazian, "Biofuel types and membrane separation", Environmental Chemistry Letters, Vol. 17, No. 1, 2019, pp. 1-18.‏
[5] D. Unlu, and N. D. Hilmioglu, "Synthesis of ethyl levulinate as a fuel bioadditive by a novel catalytically active pervaporation membrane", Energy and Fuels, Vol. 30, No. 4, 2016, pp. 2997-3003.‏
[6] F. J. Novita, H. Y. Lee, and M. Lee, "Reactive distillation with pervaporation hybrid configuration for enhanced ethyl levulinate production", Chemical Engineering Science, Vol. 190, 2018, pp. 297-311.‏
[7] D. R. Fernandes, A. S. Rocha, E. F. Mai, C. J. Mota, and V. T. Da Silva, "Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts", Applied Catalysis A: General, Vol. 425, 2012, pp. 199-204.‏
[8] D. Unlu, O. Ilgen, and N. D. Hilmioglu, "Reactive separation system for effective upgrade of levulinic acid into ethyl levulinate", Chemical Engineering Research and Design, Vol. 118, 2017, pp. 248-258.‏
[9] D. Unlu, and N. D. Hilmioglu, "Applicability of a TSA/ZrO2 catalytic membrane for the production of ethyl levulinate as raw material of gamma-valerolactone", International Journal of Hydrogen Energy, Vol. 42, No. 33, 2017, pp. 21487-21494.‏
[10] S. Quereshi, E. Ahmad, K. K. Pant, and S. Dutta, "Synthesis and characterization of zirconia supported silicotungstic acid for ethyl levulinate production", Industrial and Engineering Chemistry Research, Vol. 58, No. 35, 2019, pp. 16045-16054.‏
[11] C. R. Patil, P. S. Niphadkar, V. V. Bokade, and P. N. Joshi, "Esterification of levulinic acid to ethyl levulinate over bimodal micro–mesoporous H/BEA zeolite derivatives", Catalysis Communications, Vol. 43, 2014, pp. 188-191.‏
[12] D. Unlu, and N. D. Hilmioglu.,"Pervaporation catalytic membrane reactor application over functional chitosan membrane", Journal of Membrane Science, Vol. 559, 2018, pp. 138-147.‏
[13] W. Zhang, S. Na, W. Li, and W. Xing, "Kinetic modeling of pervaporation aided esterification of propionic acid and ethanol using T-type zeolite membrane", Industrial and Engineering Chemistry Research, Vol. 54, No. 18, 2015, pp. 4940-4946.‏
[14] W. Zhang, X. Su, Z. Hao, S. Qin, W. Qing, and C. Xia, "Pervaporation membrane reactor for producing hydroxylamine chloride via an oxime hydrolysis reaction", Industrial and Engineering Chemistry Research, Vol. 54, No. 1, 2015, pp. 100-107.‏
[15] D. S. Constantino, R. P. Faria, A. M. Ribeiro, J. M. Loureiro, and A. E. Rodrigues, "Performance evaluation of pervaporation technology for process intensification of butyl acrylate synthesis", Industrial and Engineering Chemistry Research, Vol. 56, No. 45, 2017, pp. 13064-13074.‏
[16] S. Sorribas, A. Kudasheva, E. Almendro, B. Zornoza, O. de la Iglesia, C. Téllez, and J. Coronas, "Pervaporation and membrane reactor performance of polyimide based mixed matrix membranes containing MOF HKUST-1", Chemical Engineering Science, Vol. 124, 2015, pp. 37-44.‏
[17] W. Qing, J. Chen, X. Shi, J. Wu, J. Hu, and W. Zhang, "Conversion enhancement for acetalization using a catalytically active membrane in a pervaporation membrane reactor", Chemical Engineering Journal, Vol. 313, 2017, pp. 1396-1405.‏
[18] F. U. Nigiz, "A comparative study on the synthesis of ethyl propionate in a pervaporation membrane reactor", Chemical Engineering and Processing-Process Intensification, Vol. 128, 2018, pp. 173-179.‏
[19] M. A. Gómez-García, I. Dobrosz-Gomez, and W. O. Viana, "Experimental assessment and simulation of isoamyl acetate production using a batch pervaporation membrane reactor", Chemical Engineering and Processing: Process Intensification, Vol. 122, 2017, pp. 155-160.‏
[20] A. Penkova, G. Polotskaya, and A. Toikka, "Pervaporation composite membranes for ethyl acetate production", Chemical Engineering and Processing: Process Intensification, Vol. 87, 2015, pp. 81-87.‏
[21] رحمان زینالی, کامران قاسم زاده و علیرضا بهروزسرند، "مدلسازی عملکرد غشای نانوساختار گرافنی جهت جداسازی هیدروژن به کمک روش دینامیک سیالات محاسباتی"، مدلسازی در مهندسی دوره 16، شماره 55، 1397، صفحه 1-1.
 [22] نیما احمدی،عبدالرحمن دادوند، ایرج میرزایی و سجاد رضازاده، "بررسی عددی عملکرد پیل سوختی پلیمری دو کاناله با جریان گاز ناهمسو" ، مدلسازی در مهندسی، دوره 16، شماره 53، 1397، صفحه 39-51.
[23] محسن مهدی پور قاضی و محمد رضا مویدی، "مدلسازی ریاضی و شبکه عصبی انتقال جرم در غشاهای مایع آمین گلایکول برای جداسازی دی اکسید کربن از هوا" ، مدلسازی در مهندسی، دوره 14، شماره 47، 1395، صفحه 51-60
[24] کامران قاسم زاده و میلاد قهرمانی، "آنالیز تئوری بر پایه روش CFD جهت ارزیابی عملکرد راکتور غشائی پالادیوم-نقره در مقایسه با راکتور معمولی طی فرآیند هیدروژن زدایی از سیکلوهگزان"، مدلسازی در مهندسی، دوره 18،شماره 60، 1399.
[25] P. Delgado, M. T.Sanz, S. Beltrán, and L. A.Núñez, "Ethyl lactate production via esterification of lactic acid with ethanol combined with pervaporation", Chemical Engineering Journal, Vol. 165, No. 2, 2010, pp. 693-700.‏
[26] V. Russo, V. Hrobar, P. Mäki-Arvela, K. Eränen, F. Sandelin, M. Di Serio, and T. Salmi, "Kinetics and modelling of levulinic acid esterification in batch and continuous reactors", Topics in Catalysis, Vol. 61, No. 18-19, 2018, pp. 1856-1865.‏
[27] W. H. Chen, C. W. Tsai, Y. L. Lin, R. Y. Chein, and C. T. Yu, "Reaction phenomena of high temperature water gas shift reaction in a membrane reactor", Fuel, Vol. 199, 2017, pp. 358-371.‏